login
A297073
T(n,k)=Number of nXk 0..1 arrays with no 1 adjacent to 1 king-move neighboring 1.
8
2, 3, 3, 5, 10, 5, 8, 32, 32, 8, 13, 103, 205, 103, 13, 21, 350, 1292, 1292, 350, 21, 34, 1201, 8810, 16059, 8810, 1201, 34, 55, 4143, 60779, 214205, 214205, 60779, 4143, 55, 89, 14353, 419569, 2883705, 5651413, 2883705, 419569, 14353, 89, 144, 49844
OFFSET
1,1
COMMENTS
Table starts
..2.....3........5..........8............13...............21.................34
..3....10.......32........103...........350.............1201...............4143
..5....32......205.......1292..........8810............60779.............419569
..8...103.....1292......16059........214205..........2883705...........38753117
.13...350.....8810.....214205.......5651413........150408381.........3987917885
.21..1201....60779....2883705.....150408381.......7919440725.......414777995952
.34..4143...419569...38753117....3987917885.....414777995952.....42862620370029
.55.14353..2901787..521094462..105763678912...21727028378285...4429615438702673
.89.49844.20091572.7010388932.2806435386716.1138816744364625.458096301059196673
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = a(n-1) +a(n-2)
k=2: a(n) = 4*a(n-1) -a(n-2) -a(n-3) -4*a(n-4) -8*a(n-5)
k=3: [order 11]
k=4: [order 23]
k=5: [order 58]
EXAMPLE
Some solutions for n=4 k=4
..1..0..0..1. .1..1..1..0. .0..0..1..0. .1..1..0..0. .0..0..1..0
..1..1..1..1. .1..1..1..0. .0..1..1..1. .0..1..0..0. .1..0..1..1
..0..0..1..1. .1..1..1..0. .1..1..1..1. .0..1..1..0. .1..1..0..0
..0..0..1..1. .1..0..1..1. .1..1..0..1. .0..1..1..1. .0..1..0..1
CROSSREFS
Column 1 is A000045(n+2).
Sequence in context: A001180 A228778 A296674 * A019460 A329057 A236165
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Dec 24 2017
STATUS
approved