login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A297073
T(n,k)=Number of nXk 0..1 arrays with no 1 adjacent to 1 king-move neighboring 1.
8
2, 3, 3, 5, 10, 5, 8, 32, 32, 8, 13, 103, 205, 103, 13, 21, 350, 1292, 1292, 350, 21, 34, 1201, 8810, 16059, 8810, 1201, 34, 55, 4143, 60779, 214205, 214205, 60779, 4143, 55, 89, 14353, 419569, 2883705, 5651413, 2883705, 419569, 14353, 89, 144, 49844
OFFSET
1,1
COMMENTS
Table starts
..2.....3........5..........8............13...............21.................34
..3....10.......32........103...........350.............1201...............4143
..5....32......205.......1292..........8810............60779.............419569
..8...103.....1292......16059........214205..........2883705...........38753117
.13...350.....8810.....214205.......5651413........150408381.........3987917885
.21..1201....60779....2883705.....150408381.......7919440725.......414777995952
.34..4143...419569...38753117....3987917885.....414777995952.....42862620370029
.55.14353..2901787..521094462..105763678912...21727028378285...4429615438702673
.89.49844.20091572.7010388932.2806435386716.1138816744364625.458096301059196673
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = a(n-1) +a(n-2)
k=2: a(n) = 4*a(n-1) -a(n-2) -a(n-3) -4*a(n-4) -8*a(n-5)
k=3: [order 11]
k=4: [order 23]
k=5: [order 58]
EXAMPLE
Some solutions for n=4 k=4
..1..0..0..1. .1..1..1..0. .0..0..1..0. .1..1..0..0. .0..0..1..0
..1..1..1..1. .1..1..1..0. .0..1..1..1. .0..1..0..0. .1..0..1..1
..0..0..1..1. .1..1..1..0. .1..1..1..1. .0..1..1..0. .1..1..0..0
..0..0..1..1. .1..0..1..1. .1..1..0..1. .0..1..1..1. .0..1..0..1
CROSSREFS
Column 1 is A000045(n+2).
Sequence in context: A001180 A228778 A296674 * A019460 A329057 A236165
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Dec 24 2017
STATUS
approved