login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A228778
a(n) = 2^Fibonacci(n) + 1.
0
2, 3, 3, 5, 9, 33, 257, 8193, 2097153, 17179869185, 36028797018963969, 618970019642690137449562113, 22300745198530623141535718272648361505980417, 13803492693581127574869511724554050904902217944340773110325048447598593
OFFSET
0,1
FORMULA
a(n+2) = a(n+1)*a(n) - a(n) - a(n+1) + 2, a(0)=2, a(1)=3.
Binet type formula: log_2(a(n)-1) = (1/sqrt(5)) * (r^n - s^n), where r and s are the roots of x^2-x-1. (this is true by definition).
a(n) = A000301(n) + 1 = A063896(n) + 2. - Alois P. Heinz, Aug 12 2017
MAPLE
a:= n-> 1 + 2^(<<0|1>, <1|1>>^n)[1, 2]:
seq(a(n), n=0..15); # Alois P. Heinz, Aug 12 2017
MATHEMATICA
Table[2^Fibonacci[n] + 1, {n, 0, 13}] (* T. D. Noe, Sep 07 2013 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Yeshwant Shivrai Valaulikar and M. Tamba, Sep 04 2013
STATUS
approved