login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A236165 a(n) = a(n-1) + a(n-2) + a(n-3), with a(0) = a(1) = 1, a(2) = 0. 2
1, 1, 0, 0, 2, 3, 3, 5, 10, 16, 24, 39, 65, 105, 168, 272, 442, 715, 1155, 1869, 3026, 4896, 7920, 12815, 20737, 33553, 54288, 87840, 142130, 229971, 372099, 602069, 974170, 1576240, 2550408, 4126647, 6677057, 10803705, 17480760, 28284464, 45765226, 74049691 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,5

LINKS

Harvey P. Dale, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (1,0,1,1).

FORMULA

G.f.: (1 - x^2 - x^3) / (1 - x - x^3 - x^4).

a(n+1)*a(n+3) = a(n)*a(n+2) + a(n+1)*a(n+2) for all n in Z.

a(n+1) + a(n-1) = A000045(n) for all n in Z.

a(2n) = A059929(n-1), a(2n-1) = A226205(n).

EXAMPLE

G.f. = 1 + x + 2*x^4 + 3*x^5 + 3*x^6 + 5*x^7 + 10*x^8 + 16*x^9 + ...

MATHEMATICA

a[ n_] := Fibonacci[ Quotient[ n, 2] - 1] Fibonacci[ Quotient[ n, 2] + 1 + Mod[n, 2]];

LinearRecurrence[{1, 0, 1, 1}, {1, 1, 0, 0}, 50] (* Harvey P. Dale, Jan 19 2015 *)

CoefficientList[Series[(1 - x^2 - x^3) / (1 - x - x^3 - x^4), {x, 0, 70}], x] (* Vincenzo Librandi, Jan 20 2015 *)

PROG

(PARI) {a(n) = fibonacci( n\2 - 1 ) * fibonacci( n\2 + 1 + n%2 )};

(MAGMA) I:=[1, 1, 0, 0]; [n le 4 select I[n] else Self(n-1)+Self(n-3)+Self(n-4): n in [1..50]]; // Vincenzo Librandi, Jan 20 2015

CROSSREFS

Cf. A000045, A059929, A226205.

Sequence in context: A297073 A019460 A329057 * A049855 A286868 A326184

Adjacent sequences:  A236162 A236163 A236164 * A236166 A236167 A236168

KEYWORD

nonn,easy

AUTHOR

Michael Somos, Jan 19 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 25 01:10 EST 2021. Contains 340414 sequences. (Running on oeis4.)