login
A285062
Numerators of the exponential expansion of (4/(log(1+x)))*(1-1/(1+x)^(1/4)).
2
1, -1, 7, -81, 3853, -25721, 1862773, -52571875, 2828694491, -20554196553, 2489317910533, -36843139557745, 187344440646279463, -200535626786994961, 15853768141768274581, -319644021424695652161, 927777140067161706072467, -1412565248386878259675625, 2151379749437782936765977859
OFFSET
0,3
COMMENTS
This gives the numerators of the z-sequence for the Sheffer triangle (exp(x), exp(4*x) - 1) shown in A285061. For the notion and use of a- and z- sequences for Sheffer triangles see the W. Lang link under A006232. The a-sequence of this Sheffer triangle is given by 4*A006232/A006233.
For the nontrivial recurrence for the sequence {1^n} of column m=0 of A285061 by the z-sequence see the example n=4 below.
FORMULA
The e.g.f. of the rationals r(n) = a(n)/A285063(n) is (4/(log(1+x)))*(1 - 1/(1+x)^(1/4)).
EXAMPLE
The rationals r(n) = a(n)/A285063(n), n >= 0, start: 1, -1/8, 7/48, -81/256, 3853/3840, -25721/6144, 1862773/86016, -52571875/393216, 2828694491/2949120, -20554196553/2621440, ...
The z-Recurrence for A285061(4, 0) = 1 is 1 = 4*(1*1 + 124*(-1/8) + 240*(7/48) + 64*(-81/256)).
CROSSREFS
KEYWORD
sign,frac,easy
AUTHOR
Wolfdieter Lang, Apr 13 2017
STATUS
approved