login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A184294
Table read by antidiagonals: T(n,k) = number of distinct n X k toroidal 0..7 arrays.
5
8, 36, 36, 176, 1072, 176, 1044, 43800, 43800, 1044, 6560, 2098720, 14913536, 2098720, 6560, 43800, 107377488, 5726645688, 5726645688, 107377488, 43800, 299600, 5726689312, 2345624810432, 17592189193216, 2345624810432, 5726689312, 299600
OFFSET
1,1
LINKS
Alois P. Heinz, Antidiagonals n = 1..65, flattened (first 8 antidiagonals from R. H. Hardin)
S. N. Ethier, Counting toroidal binary arrays, arXiv:1301.2352v1 [math.CO], Jan 10, 2013.
S. N. Ethier and Jiyeon Lee, Counting toroidal binary arrays, II, arXiv:1502.03792v1 [math.CO], Feb 12, 2015.
FORMULA
T(n,k) = (1/(n*k)) * Sum_{c|n} Sum_{d|k} phi(c) * phi(d) * 8^(n*k/lcm(c,d)). - Andrew Howroyd, Sep 27 2017
EXAMPLE
Table starts
8 36 176 1044 6560 43800
36 1072 43800 2098720 107377488 5726689312
176 43800 14913536 5726645688 2345624810432
1044 2098720 5726645688 17592189193216
6560 107377488 2345624810432
43800 5726689312
299600
MAPLE
with(numtheory):
T:= (n, k)-> add(add(phi(c)*phi(d)*8^(n*k/ilcm(c, d)),
c=divisors(n)), d=divisors(k))/(n*k):
seq(seq(T(n, 1+d-n), n=1..d), d=1..8); # Alois P. Heinz, Aug 20 2017
MATHEMATICA
T[n_, k_] := (1/(n*k))*Sum[Sum[EulerPhi[c]*EulerPhi[d]*8^(n*(k/LCM[c, d])), {d, Divisors[k]}], {c, Divisors[n]}]; Table[T[n - k + 1, k], {n, 1, 8}, {k, 1, n}] // Flatten (* Jean-François Alcover, Oct 30 2017, after Alois P. Heinz *)
PROG
(PARI)
T(n, k) = (1/(n*k)) * sumdiv(n, c, sumdiv(k, d, eulerphi(c) * eulerphi(d) * 8^(n*k/lcm(c, d)))); \\ Andrew Howroyd, Sep 27 2017
CROSSREFS
Columns 1-3 are A054627, A184292, A184293.
Sequence in context: A089698 A133887 A200713 * A057345 A048740 A139608
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Jan 10 2011
STATUS
approved