login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Table read by antidiagonals: T(n,k) = number of distinct n X k toroidal 0..7 arrays.
5

%I #32 Oct 28 2021 06:28:09

%S 8,36,36,176,1072,176,1044,43800,43800,1044,6560,2098720,14913536,

%T 2098720,6560,43800,107377488,5726645688,5726645688,107377488,43800,

%U 299600,5726689312,2345624810432,17592189193216,2345624810432,5726689312,299600

%N Table read by antidiagonals: T(n,k) = number of distinct n X k toroidal 0..7 arrays.

%H Alois P. Heinz, <a href="/A184294/b184294.txt">Antidiagonals n = 1..65, flattened</a> (first 8 antidiagonals from R. H. Hardin)

%H S. N. Ethier, <a href="http://arxiv.org/abs/1301.2352">Counting toroidal binary arrays</a>, arXiv:1301.2352v1 [math.CO], Jan 10, 2013.

%H S. N. Ethier and Jiyeon Lee, <a href="http://arxiv.org/abs/1502.03792">Counting toroidal binary arrays, II</a>, arXiv:1502.03792v1 [math.CO], Feb 12, 2015.

%H Veronika Irvine, <a href="http://hdl.handle.net/1828/7495">Lace Tessellations: A mathematical model for bobbin lace and an exhaustive combinatorial search for patterns</a>, PhD Dissertation, University of Victoria, 2016.

%F T(n,k) = (1/(n*k)) * Sum_{c|n} Sum_{d|k} phi(c) * phi(d) * 8^(n*k/lcm(c,d)). - _Andrew Howroyd_, Sep 27 2017

%e Table starts

%e 8 36 176 1044 6560 43800

%e 36 1072 43800 2098720 107377488 5726689312

%e 176 43800 14913536 5726645688 2345624810432

%e 1044 2098720 5726645688 17592189193216

%e 6560 107377488 2345624810432

%e 43800 5726689312

%e 299600

%p with(numtheory):

%p T:= (n, k)-> add(add(phi(c)*phi(d)*8^(n*k/ilcm(c, d)),

%p c=divisors(n)), d=divisors(k))/(n*k):

%p seq(seq(T(n, 1+d-n), n=1..d), d=1..8); # _Alois P. Heinz_, Aug 20 2017

%t T[n_, k_] := (1/(n*k))*Sum[Sum[EulerPhi[c]*EulerPhi[d]*8^(n*(k/LCM[c, d])), {d, Divisors[k]}], {c, Divisors[n]}]; Table[T[n - k + 1, k], {n, 1, 8}, {k, 1, n}] // Flatten (* _Jean-François Alcover_, Oct 30 2017, after _Alois P. Heinz_ *)

%o (PARI)

%o T(n, k) = (1/(n*k)) * sumdiv(n, c, sumdiv(k, d, eulerphi(c) * eulerphi(d) * 8^(n*k/lcm(c,d)))); \\ _Andrew Howroyd_, Sep 27 2017

%Y Columns 1-3 are A054627, A184292, A184293.

%Y Cf. A184271, A184284.

%K nonn,tabl

%O 1,1

%A _R. H. Hardin_, Jan 10 2011