login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A184291
Table read by antidiagonals: T(n,k) = number of distinct n X k toroidal 0..5 arrays.
4
6, 21, 21, 76, 351, 76, 336, 7826, 7826, 336, 1560, 210456, 1119936, 210456, 1560, 7826, 6047412, 181402676, 181402676, 6047412, 7826, 39996, 181410426, 31345666736, 176319685116, 31345666736, 181410426, 39996, 210126, 5597460306
OFFSET
1,1
LINKS
Andrew Howroyd, Table of n, a(n) for n = 1..1275 (first 31 terms from R. H. Hardin)
S. N. Ethier, Counting toroidal binary arrays, arXiv:1301.2352v1 [math.CO], Jan 10, 2013.
S. N. Ethier and Jiyeon Lee, Counting toroidal binary arrays, II, arXiv:1502.03792v1 [math.CO], Feb 12, 2015.
FORMULA
T(n,k) = (1/(n*k)) * Sum_{c|n} Sum_{d|k} phi(c) * phi(d) * 6^(n*k/lcm(c,d)). - Andrew Howroyd, Sep 27 2017
EXAMPLE
Table starts
6 21 76 336 1560 7826 39996
21 351 7826 210456 6047412 181410426 5597460306
76 7826 1119936 181402676 31345666736 5642220395616
336 210456 181402676 176319685116
1560 6047412 31345666736
7826 181410426
39996
MATHEMATICA
T[n_, k_] := (1/(n*k))*Sum[Sum[EulerPhi[c]*EulerPhi[d]*6^(n*(k/LCM[c, d])), {d, Divisors[k]}], {c, Divisors[n]}]; Table[T[n-k+1, k], {n, 1, 8}, {k, 1, n}] // Flatten (* Jean-François Alcover, Oct 30 2017, after Andrew Howroyd *)
PROG
(PARI)
T(n, k) = (1/(n*k)) * sumdiv(n, c, sumdiv(k, d, eulerphi(c) * eulerphi(d) * 6^(n*k/lcm(c, d)))); \\ Andrew Howroyd, Sep 27 2017
CROSSREFS
Columns 1-3 are A054625, A184289, A184290.
Sequence in context: A298266 A302202 A200831 * A102993 A276803 A143416
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Jan 10 2011
STATUS
approved