login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A286455
Compound filter (smallest prime dividing n & prime signature of conjugated prime factorization): a(n) = P(A055396(n), A286621(n)), where P(n,k) is sequence A000027 used as a pairing function.
5
0, 2, 8, 2, 18, 11, 40, 2, 8, 22, 71, 11, 97, 46, 30, 2, 143, 11, 179, 22, 93, 92, 262, 11, 18, 121, 8, 46, 335, 154, 417, 2, 212, 211, 69, 11, 540, 254, 302, 22, 679, 326, 794, 92, 30, 379, 918, 11, 40, 22, 467, 121, 1051, 11, 234, 46, 530, 529, 1242, 154, 1344, 631, 93, 2, 744, 704, 1615, 211, 822, 326, 1790, 11, 1912, 904, 30, 254, 140, 947, 2167, 22, 8
OFFSET
1,2
COMMENTS
Note that as the other component of a(n) we use A286621 instead of A278221, because of latter sequence's unwieldy large terms.
For all i, j: a(i) = a(j) => A243055(i) = A243055(j).
For all i, j: a(i) = a(j) => A286470(i) = A286470(j).
LINKS
Eric Weisstein's World of Mathematics, Pairing Function
FORMULA
a(n) = (1/2)*(2 + ((A055396(n)+A286621(n))^2) - A055396(n) - 3*A286621(n)).
PROG
(Scheme) (define (A286455 n) (* (/ 1 2) (+ (expt (+ (A055396 n) (A286621 n)) 2) (- (A055396 n)) (- (* 3 (A286621 n))) 2)))
KEYWORD
nonn
AUTHOR
Antti Karttunen, May 14 2017
STATUS
approved