login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A124395
Expansion of (1-2*x)/(1-2*x+2*x^3).
3
1, 0, 0, -2, -4, -8, -12, -16, -16, -8, 16, 64, 144, 256, 384, 480, 448, 128, -704, -2304, -4864, -8320, -12032, -14336, -12032, 0, 28672, 81408, 162816, 268288, 373760, 421888, 307200, -133120, -1110016, -2834432, -5402624, -8585216, -11501568, -12197888
OFFSET
0,4
COMMENTS
Diagonal sums of number array A124394.
FORMULA
a(n) = Sum_{k=0..floor(n/2)} Sum{j=0..k+1} C(k+1,j)*C(n-j+1,2k+1)*(-2)^j.
a(n) = term (2,2) in the 3 X 3 matrix [2,1,0; 0,0,1; -2,0,0]^n. - Alois P. Heinz, Sep 10 2008
a(n) = 2*a(n-1) - 2*a(n-3); a(0)=1, a(1)=0, a(2)=0. - Harvey P. Dale, Dec 21 2013
a(n) = A077940(n) - 2*A077940(n-1). - R. J. Mathar, Jan 25 2016
MAPLE
a:= n-> (Matrix([[2, 1, 0], [0, 0, 1], [-2, 0, 0]])^n)[2, 2]: seq (a(n), n=0..35); # Alois P. Heinz, Sep 10 2008
MATHEMATICA
CoefficientList[Series[(1-2x)/(1-2x+2x^3), {x, 0, 50}], x] (* or *) LinearRecurrence[{2, 0, -2}, {1, 0, 0}, 50] (* Harvey P. Dale, Dec 21 2013 *)
PROG
(PARI) my(x='x+O('x^50)); Vec((1-2*x)/(1-2*x+2*x^3)) \\ G. C. Greubel, Dec 25 2019
(Magma) I:=[1, 0, 0]; [n le 3 select I[n] else 2*Self(n-1) - 2*Self(n-3): n in [1..50]]; // G. C. Greubel, Dec 25 2019
(Sage)
def A124395_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( (1-2*x)/(1-2*x+2*x^3) ).list()
A124395_list(50) # G. C. Greubel, Dec 25 2019
(GAP) a:=[1, 0, 0];; for n in [3..50] do a[n]:=2*a[n-1]-2*a[n-3]; od; a; # G. C. Greubel, Dec 25 2019
CROSSREFS
Cf. A077940.
Sequence in context: A288514 A350616 A282667 * A334167 A024908 A358308
KEYWORD
easy,sign
AUTHOR
Paul Barry, Oct 30 2006
STATUS
approved