The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A124398 Denominators of partial sums of a series for sqrt(5)/3. 2
 1, 5, 25, 25, 125, 3125, 15625, 78125, 78125, 390625, 9765625, 48828125, 244140625, 244140625, 48828125, 6103515625, 30517578125, 152587890625, 152587890625, 762939453125, 19073486328125, 95367431640625, 476837158203125 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Denominators of alternating sums over central binomial coefficients scaled by powers of 5. Numerators are given by A124397. For the rationals r(n) see the W. Lang link under A124397. r(n) is not 1/3 times the rational sequence A123747/A123748 which converges to sqrt(5). LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 FORMULA a(n) = denominator(r(n)) with the rationals r(n) = Sum_{k=0..n} (-1)^k * binomial(2*k,k)/5^k, in lowest terms. r(n) = Sum_{k=0..n} (-1)^k*((2*k-1)!!/((2*k)!!)*(4/5)^k, n>=0, with the double factorials A001147 and A000165. EXAMPLE a(3) = 25 because r(3)= 1 - 2/5 + 6/25 - 4/25 = 17/25 = A124397(3)/a(3). MAPLE seq(denom(add((-1)^k*binomial(2*k, k)/5^k, k = 0..n)), n = 0..20); # G. C. Greubel, Dec 25 2019 MATHEMATICA Table[Denominator[Sum[(-1)^k*(k+1)*CatalanNumber[k]/5^k, {k, 0, n}]], {n, 0, 20}] (* G. C. Greubel, Dec 25 2019 *) PROG (PARI) a(n) = denominator(sum(k=0, n, ((-1)^k)*binomial(2*k, k)/5^k)); \\ Michel Marcus, Aug 11 2019 (Magma) [Denominator(&+[(-1)^k*(k+1)*Catalan(k)/5^k: k in [0..n]]): n in [0..20]]; // G. C. Greubel, Dec 25 2019 (Sage) [denominator(sum((-1)^k*(k+1)*catalan_number(k)/5^k for k in (0..n))) for n in (0..20)] # G. C. Greubel, Dec 25 2019 (GAP) List([0..20], n-> DenominatorRat(Sum([0..n], k-> (-1)^k*Binomial(2*k, k)/5^k)) ); # G. C. Greubel, Dec 25 2019 CROSSREFS Cf. A124397 (numerators), A208899 (sqrt(5)/3). Sequence in context: A265973 A265928 A039936 * A121003 A121007 A043057 Adjacent sequences: A124395 A124396 A124397 * A124399 A124400 A124401 KEYWORD nonn,frac,easy AUTHOR Wolfdieter Lang, Nov 10 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 4 19:24 EDT 2023. Contains 363128 sequences. (Running on oeis4.)