login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A124397 Numerators of partial sums of a series for sqrt(5)/3. 2
1, 3, 21, 17, 99, 2223, 12039, 56763, 59337, 286961, 7358781, 36088473, 183146521, 181066401, 36534213, 4535753121, 22798981683, 113528187171, 113891192583, 568042152363, 14228623114839, 71035463999307, 355598139789279 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Denominators are given by A124398.

The alternating sums over central binomial coefficients scaled by powers of 5, r(n) = Sum_{k=0..n} (-1)^k*binomial(2*k,k)/5^k, have the limit s = lim_{n-> infinity} r(n) = sqrt(5)/3. From the expansion of 1/sqrt(1+x) for x=4/5.

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000

Wolfdieter Lang, Rationals and more.

FORMULA

a(n) = numerator(r(n)) with the rationals r(n) = Sum_{k=0..n} (-1)^k * binomial(2*k,k)/5^k in lowest terms.

r(n) = Sum_{k=0..n} (-1)^k*((2*k-1)!!/((2*k)!!)*(4/5)^k, n>=0, with the double factorials A001147 and A000165.

EXAMPLE

a(3)=17 because r(3) = 1 - 2/5 + 6/25 - 4/25 = 17/25 = a(3)/A124398(3).

MAPLE

seq(numer(add((-1)^k*binomial(2*k, k)/5^k, k = 0..n)), n = 0..20); # G. C. Greubel, Dec 25 2019

MATHEMATICA

Table[Numerator[Sum[(-1)^k*(k+1)*CatalanNumber[k]/5^k, {k, 0, n}]], {n, 0, 20}] (* G. C. Greubel, Dec 25 2019 *)

PROG

(PARI) a(n) = numerator(sum(k=0, n, ((-1)^k)*binomial(2*k, k)/5^k)); \\ Michel Marcus, Aug 11 2019

(MAGMA) [Numerator(&+[(-1)^k*(k+1)*Catalan(k)/5^k: k in [0..n]]): n in [0..20]]; // G. C. Greubel, Dec 25 2019

(Sage) [numerator(sum((-1)^k*(k+1)*catalan_number(k)/5^k for k in (0..n))) for n in (0..20)] # G. C. Greubel, Dec 25 2019

(GAP) List([0..20], n-> NumeratorRat(Sum([0..n], k-> (-1)^k*Binomial(2*k, k)/5^k)) ); # G. C. Greubel, Dec 25 2019

CROSSREFS

Cf. A123747/A123748 partial sums for a series for sqrt(5).

Cf. A123749/A124396 partial sums for a series for 3/sqrt(5).

Cf. A124398 (denominators), A208899 (sqrt(5)/3).

Sequence in context: A188721 A212996 A089999 * A216324 A226319 A279842

Adjacent sequences:  A124394 A124395 A124396 * A124398 A124399 A124400

KEYWORD

nonn,frac,easy

AUTHOR

Wolfdieter Lang, Nov 10 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 14 03:33 EDT 2021. Contains 343872 sequences. (Running on oeis4.)