login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A279842
E.g.f. S(x) satisfies: C(x)^2 + 2*S(x)^2 = 1 such that S'(x) = C(x)^2 - S(x)*C(x) and C'(x) = 2*S(x)^2 - 2*S(x)*C(x), where C(x) is described by A279841.
1
1, -1, -3, 21, -21, -549, 3933, 7029, -342549, 2039499, 21325437, -479621979, 1462333419, 74172750651, -1192395763107, -3407789304171, 380952336378411, -4313364309242901, -70292105696209923, 2800422902218340421, -15710895178041433941, -1066174951636968019749, 27502560229200724642653, 89610782410072372514229, -18826208456829546478535829, 324641884843138083973324299
OFFSET
1,3
FORMULA
E.g.f. S = S(x) and related series C = C(x) satisfy:
(1) C^2 + 2*S^2 = 1.
(2) S' = C*(C - S).
(3) C' = 2*S*(S - C).
(4) C*C' + 2*S*S' = 0.
(5) C'^2 + 2*S'^2 = 2*(C - S)^2.
(6) C' + S' = 1 - 3*S*C.
(7) S = 1+x - C - Integral 3*S*C dx.
EXAMPLE
E.g.f.: S(x) = x - x^2/2! - 3*x^3/3! + 21*x^4/4! - 21*x^5/5! - 549*x^6/6! + 3933*x^7/7! + 7029*x^8/8! - 342549*x^9/9! + 2039499*x^10/10! + 21325437*x^11/11! - 479621979*x^12/12! + 1462333419*x^13/13! + 74172750651*x^14/14! - 1192395763107*x^15/15! - 3407789304171*x^16/16! + 380952336378411*x^17/17! - 4313364309242901*x^18/18! - 70292105696209923*x^19/19! + 2800422902218340421*x^20/20! +...
where C(x) and related series S(x) satisfy:
(1) C(x)^2 + 2*S(x)^2 = 1,
(2) S'(x) = C(x)^2 - S(x)*C(x), and
(3) C'(x) = 2*S(x)^2 - 2*S(x)*C(x).
The series C(x) begins:
C(x) = 1 - 2*x^2/2! + 6*x^3/3! + 6*x^4/4! - 150*x^5/5! + 522*x^6/6! + 3654*x^7/7! - 53226*x^8/8! + 104490*x^9/9! + 4132458*x^10/10! - 47627514*x^11/11! - 114714954*x^12/12! + 8856035370*x^13/13! - 75897566838*x^14/14! - 1028068746426*x^15/15! + 31770904056534*x^16/16! - 135504089273430*x^17/17! - 8135851530983382*x^18/18! + 169470347331164166*x^19/19! + 532060336564506486*x^20/20! +...
The squares of the series begin:
C(x)^2 = 1 - 4*x^2/2! + 12*x^3/3! + 36*x^4/4! - 540*x^5/5! + 1404*x^6/6! + 22428*x^7/7! - 263196*x^8/8! - 17820*x^9/9! + 30092796*x^10/10! - 281509668*x^11/11! - 1977122844*x^12/12! + 74747689380*x^13/13! - 452240926596*x^14/14! - 12862160888292*x^15/15! +...
S(x)^2 = 2*x^2/2! - 6*x^3/3! - 18*x^4/4! + 270*x^5/5! - 702*x^6/6! - 11214*x^7/7! + 131598*x^8/8! + 8910*x^9/9! - 15046398*x^10/10! + 140754834*x^11/11! + 988561422*x^12/12! - 37373844690*x^13/13! + 226120463298*x^14/14! + 6431080444146*x^15/15! +...
Also, we have C'(x) + S'(x) = 1 - 3*C(x)*S(x), where
C(x)*S(x) = x - x^2/2! - 9*x^3/3! + 57*x^4/4! + 9*x^5/5! - 2529*x^6/6! + 15399*x^7/7! + 79353*x^8/8! - 2057319*x^9/9! + 8767359*x^10/10! + 198112311*x^11/11! - 3439456263*x^12/12! + 574938729*x^13/13! + 740154836511*x^14/14! - 9454371584121*x^15/15! +...
PROG
(PARI) {a(n) = my(C=1, S=x); for(i=0, n, S = 1+x - C - intformal(3*S*C + x*O(x^n)); C = sqrt(1 - 2*S^2); ); n!*polcoeff(S, n)}
for(n=1, 30, print1(a(n), ", "))
CROSSREFS
Cf. A279841.
Sequence in context: A124397 A216324 A226319 * A043081 A091675 A067233
KEYWORD
sign
AUTHOR
Paul D. Hanna, Jan 04 2017
STATUS
approved