login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A279840 E.g.f.: exp( Integral exp(x^2) dx ). 2
1, 1, 1, 3, 9, 33, 153, 723, 4209, 25377, 172689, 1269699, 9918009, 84824577, 755458281, 7273792467, 73106578017, 778521070017, 8706817538721, 101639490754563, 1247219636693481, 15865740131343201, 211222989431067321, 2910911923076727123, 41712768080815125969, 618850476497056820193, 9493258647299740012593, 150683229897137204994243, 2464182867193114878735129, 41617827328955209795843137, 722857076727380399275752969 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

COMMENTS

Conjectures:

(1) a(n) is divisible by 3^floor((n+6)/9), for n>=0.

(2) a(9*n+2) is the final term with exactly n factors of 3, for n>=0.

LINKS

Paul D. Hanna, Table of n, a(n) for n = 0..1000

FORMULA

E.g.f.: exp( -sqrt(Pi)/2 * i * erf(i*x) ) (corrected by Vaclav Kotesovec, Sep 03 2017).

EXAMPLE

E.g.f.: A(x) = 1 + x + x^2/2! + 3*x^3/3! + 9*x^4/4! + 33*x^5/5! + 153*x^6/6! + 723*x^7/7! + 4209*x^8/8! + 25377*x^9/9! + 172689*x^10/10! + 1269699*x^11/11! + 9918009*x^12/12! +...

where A(x) = exp( Integral exp(x^2) dx ).

Related series.

log(A(x)) = x + x^3/(3*1!) + x^5/(5*2!) + x^7/(7*3!) + x^9/(9*4!) + x^11/(11*5!) + x^13/(13*6!) + x^15/(15*7!) + x^17/(17*8!) +...

which equals Integral exp(x^2) dx.

Cosh( Integral exp(x^2) dx ) = 1 + x^2/2! + 9*x^4/4! + 153*x^6/6! + 4209*x^8/8! + 172689*x^10/10! +...

Cosh( Integral exp(x^2) dx )^2 = 1 + 2*x^2/2! + 24*x^4/4! + 576*x^6/6! + 22656*x^8/8! + 1302528*x^10/10! + 101763072*x^12/12! + 10295230464*x^14/14! + 1303603347456*x^16/16! +...+ A280794(n)*x^(2*n)/(2*n)! +...

Initial series log(A(x))^n/n! begin:

log(A(x)) = x + 2*x^3/3! + 12*x^5/5! + 120*x^7/7! + 1680*x^9/9! + 30240*x^11/11! + 665280*x^13/13! +...+ A001813(n-1)*x^(2*n-1)/(2*n-1)! +...

log(A(x))^2/2! = x^2/2! + 8*x^4/4! + 112*x^6/6! + 2304*x^8/8! + 63744*x^10/10! + 2242560*x^12/12! +...

log(A(x))^3/3! = x^3/3! + 20*x^5/5! + 532*x^7/7! + 18656*x^9/9! + 830544*x^11/11! +...

log(A(x))^4/4! = x^4/4! + 40*x^6/6! + 1792*x^8/8! + 97280*x^10/10! + 6375424*x^12/12! +...

log(A(x))^5/5! = x^5/5! + 70*x^7/7! + 4872*x^9/9! + 384560*x^11/11! +...

log(A(x))^6/6! = x^6/6! + 112*x^8/8! + 11424*x^10/10! + 1253120*x^12/12! +...

...

MATHEMATICA

CoefficientList[Series[E^(-Sqrt[Pi]/2*I*Erf[I*x]), {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, Sep 03 2017 *)

PROG

(PARI) {a(n) = n!*polcoeff( exp( intformal( exp(x^2 +x*O(x^n) ) ) ), n)}

for(n=0, 30, print1(a(n), ", "))

CROSSREFS

Cf. A280794, A001813.

Sequence in context: A012584 A101899 A180632 * A009220 A294035 A007489

Adjacent sequences:  A279837 A279838 A279839 * A279841 A279842 A279843

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Jan 15 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 13 12:42 EST 2019. Contains 329968 sequences. (Running on oeis4.)