login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A279838
E.g.f. A(x) satisfies: A( sinh( A(x) ) ) = sin(x).
3
1, -1, 5, -113, 4505, -324545, 34312317, -5171466801, 1036525185393, -268061777199361, 86654517306871861, -34236056076864607345, 16224034929841344607625, -9077085568599515191480769, 5918716657866577845713460525, -4447229534037550877037585953073, 3813957492790787345317821024498657, -3702048025219670721125627874960351233
OFFSET
1,3
COMMENTS
Apart from signs, essentially the same terms as A279836.
LINKS
FORMULA
E.g.f. A(x) satisfies:
(1) A( sinh( A(x) ) ) = sin(x).
(2) A( arcsin( A(x) ) ) = arcsinh(x).
(3) arcsin( A( sinh( A(x) ) ) ) = x.
(4) sinh( A( arcsin( A(x) ) ) ) = x.
(5) A( sinh( A( arcsin(x) ) ) ) = x.
(6) A( arcsin( A( sinh(x) ) ) ) = x.
(7) Series_Reversion( A(x) ) = sinh( A( arcsin(x) ) ) = arcsin( A( sinh(x) ) ), and equals the e.g.f. of A279836.
EXAMPLE
E.g.f.: A(x) = x - x^3/3! + 5*x^5/5! - 113*x^7/7! + 4505*x^9/9! - 324545*x^11/11! + 34312317*x^13/13! - 5171466801*x^15/15! + 1036525185393*x^17/17! - 268061777199361*x^19/19! + 86654517306871861*x^21/21! - 34236056076864607345*x^23/23! + 16224034929841344607625*x^25/25! + ...
such that A( sinh( A(x) ) ) = sin(x).
Note that A(A(x)) is NOT equal to sin(arcsinh(x)) nor arcsinh(sin(x)) since the composition of these functions is not commutative.
The e.g.f. as a series with reduced fractional coefficients begins:
A(x) = x - (1/6)*x^3 + (1/24)*x^5 - (113/5040)*x^7 + (901/72576)*x^9 - (64909/7983360)*x^11 + (879803/159667200)*x^13 - (1723822267/435891456000)*x^15 + ...
PROG
(PARI) {a(n) = my(X = x +x*O(x^(2*n)), A=X); for(i=1, 2*n, A = A + (sin(X) - subst(A, x, sinh(A) ) )/2; H=A ); (2*n-1)!*polcoeff(A, 2*n-1)}
for(n=1, 20, print1(a(n), ", "))
CROSSREFS
KEYWORD
sign
AUTHOR
Paul D. Hanna, Jan 11 2017
STATUS
approved