login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A279835 Denominators of the coefficients in g.f. A(x) such that: sn(x,-A(x)) = x, where sn(x,m) is a Jacobi elliptic function. 4
1, 5, 25, 875, 4375, 21896875, 109484375, 65143203125, 325716015625, 2382612654296875, 154869822529296875, 24934041427216796875, 3562005918173828125, 3559956170522705078125, 84510816662372930908203125, 8344175483159391333221435546875, 41720877415796956666107177734375, 11291964076972525306465238189697265625 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Numerators are given by A279834.

The g.f. A(x) of this sequence equals the square of the g.f. of A279832.

LINKS

Paul D. Hanna, Table of n, a(n) for n = 0..50

FORMULA

G.f. A = A(x) satisfies:

(1) sd( x*sqrt(1+A), A/(1+A) ) = x*sqrt(1+A), where sd(x,m) = sn(x,m)/dn(x,m) is a Jacobi elliptic function.

(2) sn(2*x, -A(x)) = 2*x*sqrt(1-x^2)*sqrt(1 + x^2*A)/(1 + x^4*A).

(3) y = sn(x/2, -A(x)) is a solution to the equation:

x^2*(1 + A*y^4)^2 = 4*y^2*(1-y^2)*(1 + A*y^2).

EXAMPLE

This sequence gives the denominators of the coefficients in g.f. A(x), such that

A(x) = 1 + 3/5*x^2 + 9/25*x^4 + 212/875*x^6 + 774/4375*x^8 + 2986491/21896875*x^10 + 11962183/109484375*x^12 + 5866732236/65143203125*x^14 + 24717532254/325716015625*x^16 + 155049859325162/2382612654296875*x^18 + 8766713183100126/154869822529296875*x^20 + 1242400321151564076/24934041427216796875*x^22 + 157798597956508868/3562005918173828125*x^24 + 141417442289739551841/3559956170522705078125*x^26 + 3032690837599386922473477/84510816662372930908203125*x^28 + 272243517649610491264579553148/8344175483159391333221435546875*x^30 + 1244664961615535298800024043306/41720877415796956666107177734375*x^32 + 309586737719752481090144972054844018/11291964076972525306465238189697265625*x^34 + 1428965605601484765267196303905398982/56459820384862626532326190948486328125*x^36 + 1900644020251253780726568413610042774696/81019842252277869073888084011077880859375*x^38 + 10448090522732112432951611797351884498204/478753613308914680891156860065460205078125*x^40 +...

satisfies: sn(x,-A(x)) = x.

RELATED SERIES.

The Jacobi elliptic function sn(x,m) begins:

sn(x,m) = x - (m + 1)*x^3/3! + (m^2 + 14*m + 1)*x^5/5! - (m^3 + 135*m^2 + 135*m + 1)*x^7/7! + (m^4 + 1228*m^3 + 5478*m^2 + 1228*m + 1)*x^9/9! - (m^5 + 11069*m^4 + 165826*m^3 + 165826*m^2 + 11069*m + 1)*x^11/11! + (m^6 + 99642*m^5 + 4494351*m^4 + 13180268*m^3 + 4494351*m^2 + 99642*m + 1)*x^13/13! - (m^7 + 896803*m^6 + 116294673*m^5 + 834687179*m^4 + 834687179*m^3 + 116294673*m^2 + 896803*m + 1)*x^15/15! +...

which equals x when m = -A(x).

PROG

(PARI) /* Code to list first N nonzero terms of vector A: */ {N=20;

/* Generate 2*N terms of Jacobi Elliptic Function SN: */

SN = serreverse(intformal(1/sqrt((1-x^2)*(1-m*x^2) +x*O(x^(2*N+2))) ));

/* Print N terms of this sequence: */

A=[1]; print1(A[1], ", ");

for(i=1, N, A = concat(A, [0, 0]);

A[#A] = 6*polcoeff(x - subst(SN, m, -Ser(A)), #A+2);

print1( denominator(A[#A]), ", ") ); }

CROSSREFS

Cf. A279834, A279832, A279833, A060628.

Sequence in context: A218150 A176594 A274463 * A169652 A359232 A359235

Adjacent sequences: A279832 A279833 A279834 * A279836 A279837 A279838

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Dec 26 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 31 03:00 EDT 2023. Contains 361626 sequences. (Running on oeis4.)