login
A169652
a(1) = 5, a(n) = square of sum of previous terms.
3
5, 25, 900, 864900, 749661588900, 561993796031809299372900, 315837026779085485103717848762253067469831416900, 99753027484652761836825641888570160231510113731744254964202314837133807826801896930564374920900
OFFSET
1,1
COMMENTS
sqrt(a(n+1)/a(n)) = A144780(n).
LINKS
FORMULA
a(n+1) = [Sum_{i=1..n}{a(i)}]^2, with a(1)=5. [Paolo P. Lava, Apr 23 2010]
MAPLE
P:=proc(i) local a, s, n; print(5); s:=5; for n from 0 by 1 to i do a:=s^2; print(a); s:=s+a; od; end: P(100); # Paolo P. Lava, Apr 23 2010
MATHEMATICA
lst={5}; Do[AppendTo[lst, Total[lst]^2], {10}]; lst (* Harvey P. Dale, Sep 28 2012 *)
PROG
(Python)
#Program to generate the b-file
lst=[5]
print("1 5")
i=2
a=sum(lst)**2
while i<=11:
print(str(i)+" "+str(a))
lst.append(a)
i+=1
a=sum(lst)**2 # Indranil Ghosh, Feb 20 2017
CROSSREFS
Sequence in context: A176594 A274463 A279835 * A359232 A359235 A137114
KEYWORD
easy,nonn
AUTHOR
Giovanni Teofilatto, Apr 05 2010
STATUS
approved