login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A169652
a(1) = 5, a(n) = square of sum of previous terms.
3
5, 25, 900, 864900, 749661588900, 561993796031809299372900, 315837026779085485103717848762253067469831416900, 99753027484652761836825641888570160231510113731744254964202314837133807826801896930564374920900
OFFSET
1,1
COMMENTS
sqrt(a(n+1)/a(n)) = A144780(n).
LINKS
FORMULA
a(n+1) = [Sum_{i=1..n}{a(i)}]^2, with a(1)=5. [Paolo P. Lava, Apr 23 2010]
MAPLE
P:=proc(i) local a, s, n; print(5); s:=5; for n from 0 by 1 to i do a:=s^2; print(a); s:=s+a; od; end: P(100); # Paolo P. Lava, Apr 23 2010
MATHEMATICA
lst={5}; Do[AppendTo[lst, Total[lst]^2], {10}]; lst (* Harvey P. Dale, Sep 28 2012 *)
PROG
(Python)
#Program to generate the b-file
lst=[5]
print("1 5")
i=2
a=sum(lst)**2
while i<=11:
print(str(i)+" "+str(a))
lst.append(a)
i+=1
a=sum(lst)**2 # Indranil Ghosh, Feb 20 2017
CROSSREFS
Sequence in context: A176594 A274463 A279835 * A359232 A359235 A137114
KEYWORD
easy,nonn
AUTHOR
Giovanni Teofilatto, Apr 05 2010
STATUS
approved