login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A169653
Triangle T(n,k) = A008297(n,k) + A008297(n,n-k+1), read by rows.
2
-2, 3, 3, -7, -12, -7, 25, 48, 48, 25, -121, -260, -240, -260, -121, 721, 1830, 1500, 1500, 1830, 721, -5041, -15162, -13230, -8400, -13230, -15162, -5041, 40321, 141176, 142296, 70560, 70560, 142296, 141176, 40321, -362881, -1451592, -1695456, -874944, -423360, -874944, -1695456, -1451592, -362881
OFFSET
1,1
FORMULA
T(n, k) = t(n, k) + t(n, n-k+1), where t(n, k) = (-1)^n*(n!/k!)*binomial(n-1, k-1).
T(n, k) = A008297(n,k) + A008297(n,n-k+1).
From G. C. Greubel, Feb 23 2021: (Start)
T(n, k) = (-1)^n * (A105278(n, k) + A105278(n, n-k+1)).
T(n, k) = (-1)^n * ( k! + (n-k+1)! ) * A001263(n, k).
Sum_{k=1..n} T(n, k) = 2 * (-1)^n * A000262(n). (End)
EXAMPLE
Triangle begins as:
-2;
3, 3;
-7, -12, -7;
25, 48, 48, 25;
-121, -260, -240, -260, -121;
721, 1830, 1500, 1500, 1830, 721;
-5041, -15162, -13230, -8400, -13230, -15162, -5041;
40321, 141176, 142296, 70560, 70560, 142296, 141176, 40321;
MATHEMATICA
t[n_, m_] = (-1)^n*(n!/m!)*Binomial[n-1, m-1];
T[n_, m_] = t[n, m] + t[n, n-m+1];
Table[T[n, k], {n, 12}, {k, n}]//Flatten (* modified by G. C. Greubel, Feb 23 2021 *)
PROG
(Sage)
def A001263(n, k): return binomial(n-1, k-1)*binomial(n, k-1)/k
def A169653(n, k): return (-1)^n*A001263(n, k)*(factorial(k) + factorial(n-k+1))
flatten([[A169653(n, k) for k in (1..n)] for n in (1..10)]) # G. C. Greubel, Feb 23 2021
(Magma)
A001263:= func< n, k | Binomial(n-1, k-1)*Binomial(n, k-1)/k >;
A169653:= func< n, k | (-1)^n*A001263(n, k)*(Factorial(k) + Factorial(n-k+1)) >;
[A169653(n, k): k in [1..n], n in [1..10]]; // G. C. Greubel, Feb 23 2021
CROSSREFS
KEYWORD
sign,tabl
AUTHOR
Roger L. Bagula, Apr 05 2010
EXTENSIONS
Edited by G. C. Greubel, Feb 23 2021
STATUS
approved