login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A169656
Triangle, read by rows, T(n, k) = (-1)^n*(n!/k!)^2*binomial(n-1, k-1).
1
-1, 4, 1, -36, -18, -1, 576, 432, 48, 1, -14400, -14400, -2400, -100, -1, 518400, 648000, 144000, 9000, 180, 1, -25401600, -38102400, -10584000, -882000, -26460, -294, -1, 1625702400, 2844979200, 948326400, 98784000, 3951360, 65856, 448, 1
OFFSET
1,2
COMMENTS
Row sums are: {-1, 5, -55, 1057, -31301, 1319581, -74996755, 5521809665, -510921831817, 58003632177301, ...}.
FORMULA
T(n, k) = (-1)^n * (n!/k!)^2 * binomial(n-1, k-1).
EXAMPLE
Triangle begins as:
-1;
4, 1;
-36, -18, -1;
576, 432, 48, 1;
-14400, -14400, -2400, -100, -1;
518400, 648000, 144000, 9000, 180, 1;
-25401600, -38102400, -10584000, -882000, -26460, -294, -1;
MAPLE
seq(seq( (-1)^n*(n!/k!)^2*binomial(n-1, k-1), k=1..n), n=1..10); # G. C. Greubel, Nov 28 2019
MATHEMATICA
T[n_, k_]:= (-1)^n*(n!/k!)^2*Binomial[n-1, k-1]; Table[T[n, k], {n, 10}, {k, n}]//Flatten
PROG
(PARI) T(n, k) = (-1)^n*(n!/k!)^2*binomial(n-1, k-1); \\ G. C. Greubel, Nov 28 2019
(Magma) F:=Factorial; [(-1)^n*(F(n)/F(k))^2*Binomial(n-1, k-1): k in [1..n], n in [1..10]]; // G. C. Greubel, Nov 28 2019
(Sage) f=factorial; [[(-1)^n*(f(n)/f(k))^2*binomial(n-1, k-1) for k in (1..n)] for n in (1..10)] # G. C. Greubel, Nov 28 2019
(GAP) F:=Factorial;; Flat(List([1..10], n-> List([1..n], k-> (-1)^n*(F(n)/F(k) )^2*Binomial(n-1, k-1) ))); # G. C. Greubel, Nov 28 2019
CROSSREFS
Cf. A008297.
Sequence in context: A329066 A144267 A011801 * A362589 A303987 A297900
KEYWORD
sign,tabl
AUTHOR
Roger L. Bagula, Apr 05 2010
EXTENSIONS
Edited by G. C. Greubel, Nov 28 2019
STATUS
approved