OFFSET
1,2
COMMENTS
Row sums are: {-1, 5, -55, 1057, -31301, 1319581, -74996755, 5521809665, -510921831817, 58003632177301, ...}.
LINKS
G. C. Greubel, Rows n = 1..100 of triangle, flattened
FORMULA
T(n, k) = (-1)^n * (n!/k!)^2 * binomial(n-1, k-1).
EXAMPLE
Triangle begins as:
-1;
4, 1;
-36, -18, -1;
576, 432, 48, 1;
-14400, -14400, -2400, -100, -1;
518400, 648000, 144000, 9000, 180, 1;
-25401600, -38102400, -10584000, -882000, -26460, -294, -1;
MAPLE
seq(seq( (-1)^n*(n!/k!)^2*binomial(n-1, k-1), k=1..n), n=1..10); # G. C. Greubel, Nov 28 2019
MATHEMATICA
T[n_, k_]:= (-1)^n*(n!/k!)^2*Binomial[n-1, k-1]; Table[T[n, k], {n, 10}, {k, n}]//Flatten
PROG
(PARI) T(n, k) = (-1)^n*(n!/k!)^2*binomial(n-1, k-1); \\ G. C. Greubel, Nov 28 2019
(Magma) F:=Factorial; [(-1)^n*(F(n)/F(k))^2*Binomial(n-1, k-1): k in [1..n], n in [1..10]]; // G. C. Greubel, Nov 28 2019
(Sage) f=factorial; [[(-1)^n*(f(n)/f(k))^2*binomial(n-1, k-1) for k in (1..n)] for n in (1..10)] # G. C. Greubel, Nov 28 2019
(GAP) F:=Factorial;; Flat(List([1..10], n-> List([1..n], k-> (-1)^n*(F(n)/F(k) )^2*Binomial(n-1, k-1) ))); # G. C. Greubel, Nov 28 2019
CROSSREFS
KEYWORD
sign,tabl
AUTHOR
Roger L. Bagula, Apr 05 2010
EXTENSIONS
Edited by G. C. Greubel, Nov 28 2019
STATUS
approved