The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A362589 Triangular array read by rows. T(n,k) is the number of ways to form an ordered pair of n-permutations and then choose a size k subset of its common descent set, n >= 0, 0 <= k <= max{0,n-1}. 0
 1, 1, 4, 1, 36, 18, 1, 576, 432, 68, 1, 14400, 14400, 3900, 250, 1, 518400, 648000, 252000, 32400, 922, 1, 25401600, 38102400, 19404000, 3880800, 262542, 3430, 1, 1625702400, 2844979200, 1795046400, 493920000, 56664384, 2119152, 12868, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS Table of n, a(n) for n=0..36. L. Carlitz, R. Scoville and T. Vaughan, Enumeration of pairs of permutations and sequences, Bull. Amer. Math. Soc., 80 (1974), 881-884. FORMULA Sum_{n>=0} Sum_{k=0..n-1} T(n,k)*u^k*z^n/(n!)^2 = u/(u + 1 - E(u*z)) where E(z) = Sum_{n>=0} z^n/(n!)^2. Column k=1: Sum_{k=1..n-1} A192721(n,k)*k gives total number of common descents over all permutation pairs. EXAMPLE Triangle begins: 1; 1; 4, 1; 36, 18, 1; 576, 432, 68, 1; 14400, 14400, 3900, 250, 1; ... MATHEMATICA nn = 8; B[n_] := n!^2; e[z_] := Sum[z^n/B[n], {n, 0, nn}]; Map[Select[#, # > 0 &] &, Table[B[n], {n, 0, nn}] CoefficientList[Series[u/(u + 1 - e[u z]), {z, 0, nn}], {z, u}]] // Flatten CROSSREFS Cf. A001044 (column k=0), A102221 (row sums), A192721. Sequence in context: A144267 A011801 A169656 * A303987 A297900 A363819 Adjacent sequences: A362586 A362587 A362588 * A362590 A362591 A362592 KEYWORD nonn,tabf AUTHOR Geoffrey Critzer, May 01 2023 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 18 03:29 EDT 2024. Contains 373468 sequences. (Running on oeis4.)