login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A303987 Triangle read by rows: T(n, k) = (binomial(n,k)*binomial(n+k,k))^2 = A063007(n, k)^2, for n >= 0, k = 0..n. 1
1, 1, 4, 1, 36, 36, 1, 144, 900, 400, 1, 400, 8100, 19600, 4900, 1, 900, 44100, 313600, 396900, 63504, 1, 1764, 176400, 2822400, 9922500, 7683984, 853776, 1, 3136, 571536, 17640000, 133402500, 276623424, 144288144, 11778624, 1, 5184, 1587600, 85377600, 1200622500, 5194373184, 7070119056, 2650190400, 165636900 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,3
COMMENTS
The row sums of this triangle are b(n) = A005259(n), for n >= 0. This sequence b was used in R. Apéry's 1979 proof of the irrationality of Zeta(3). See A005259 for references and links.
Row polynomials R(n, x) := Sum_{k=0..n} T(n, k)*x^k = hypergeometric([-n, -n, n+1, n+1], [1, 1, 1], x), hence b(n) = hypergeometric([-n, -n, n+1, n+1], [1, 1, 1], 1) (see the formula in A005259 given by K. A. Penson. This is the solution to Exercise 2.14 of the Koepf reference given there, p. 29).
LINKS
FORMULA
T(n, k) = (binomial(n,k)*binomial(n+k,k))^2 = A063007(n, k)^2, for n >= 0 and k = 0..n.
T(n, k) = (binomial(n+k, 2*k)*cbi(k))^2, with cbi(k) = A000984(k) = binomial(2*k, k), and cbi(k)^2 = A002894(k).
G.f. for column sequences (without leading zeros):
cbi(k)^2*P2(2*k, x)/(1 - x)^(4*k+1), with the row polynomials of A008459 (Pascal entries squared) P2(2*k, x) = Sum_{j=0..2*k} A008459(2*k, j)*x^j. For a proof see the general comment in A288876 on the diagonals and columns of A008459.
EXAMPLE
The triangle T begins:
n\k 0 1 2 3 4 5 6 7 ...
0: 1
1: 1 4
2: 1 36 36
3: 1 144 900 400
4: 1 400 8100 19600 4900
5: 1 900 44100 313600 396900 63504
6: 1 1764 176400 2822400 9922500 7683984 853776
7: 1 3136 571536 17640000 133402500 276623424 144288144 11778624
----------------------------------------------------------------------------
row n = 8: 1 5184 1587600 85377600 1200622500 5194373184 7070119056 2650190400 165636900,
row n = 9: 1 8100 3920400 341510400 8116208100 63631071504 176752976400 169612185600 47869064100 2363904400,
row n = 10: 1 12100 8820900 1177862400 44188244100 572679643536 2828047622400 5446435737600 3877394192100 853369488400 34134779536.
...
MATHEMATICA
T[n_, k_] := (Gamma[k + n + 1]/(Gamma[k + 1]^2*Gamma[-k + n + 1]))^2;
Flatten[Table[T[n, k], {n, 0, 8}, {k, 0, n}]] (* Peter Luschny, May 14 2018 *)
PROG
(GAP) Flat(List([0..10], n->List([0..n], k->(Binomial(n, k)*Binomial(n+k, k))^2))); # Muniru A Asiru, May 15 2018
CROSSREFS
The column sequences (without zeros) are A000012, A035287(n+1) = 4*A000217(n)^2, 36*A288876, 400*A000579(n+6)^2, 4900*A000581(n+8)^2, 63504*A001287(n+10)^2, ...
Sequence in context: A011801 A169656 A362589 * A297900 A363819 A298495
KEYWORD
nonn,easy,tabl
AUTHOR
Wolfdieter Lang, May 14 2018
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 25 15:24 EDT 2024. Contains 373705 sequences. (Running on oeis4.)