login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A359235
a(n) is the smallest centered square number with exactly n prime factors (counted with multiplicity).
1
1, 5, 25, 925, 1625, 47125, 2115625, 4330625, 83760625, 1049140625, 6098828125, 224991015625, 3735483578125, 329495166015625, 8193863401953125, 7604781494140625, 216431299462890625, 148146624615478515625, 25926420587158203125, 11071085186929931640625
OFFSET
0,2
COMMENTS
a(14) <= 33811910869140625, a(15) <= 7604781494140625, a(16) <= 216431299462890625. - Robert Israel, Dec 22 2022
LINKS
Eric Weisstein's World of Mathematics, Centered Square Number
Eric Weisstein's World of Mathematics, Prime Factor
EXAMPLE
a(4) = 1625, because 1625 is a centered square number with 4 prime factors (counted with multiplicity) {5, 5, 5, 13} and this is the smallest such number.
MAPLE
cs:= n -> 2*n*(n+1)+1:
V:= Vector(12): count:= 0:
for n from 1 while count < 12 do
v:= cs(n);
w:= numtheory:-bigomega(v);
if V[w] = 0 then V[w]:= v; count:= count+1 fi
od:
convert(V, list); # Robert Israel, Dec 22 2022
PROG
(PARI)
bigomega_centered_square_numbers(A, B, n) = A=max(A, 2^n); (f(m, p, n) = my(list=List()); if(n==1, forprime(q=max(p, ceil(A/m)), B\m, if(q%4==1, my(t=m*q); if(issquare(2*t-1), listput(list, t)))), forprime(q=p, sqrtnint(B\m, n), if(q%4==1, my(t=m*q); if(ceil(A/t) <= B\t, list=concat(list, f(t, q, n-1)))))); list); vecsort(Vec(f(1, 2, n)));
a(n) = if(n==0, return(1)); my(x=2^n, y=2*x); while(1, my(v=bigomega_centered_square_numbers(x, y, n)); if(#v >= 1, return(v[1])); x=y+1; y=2*x); \\ Daniel Suteu, Dec 29 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Dec 22 2022
EXTENSIONS
a(11)-a(13) from Robert Israel, Dec 22 2022
a(14)-a(19) from Daniel Suteu, Dec 29 2022
STATUS
approved