|
|
A359236
|
|
Number of divisors of 5*n-2 of form 5*k+1.
|
|
10
|
|
|
1, 1, 1, 2, 1, 1, 2, 1, 1, 3, 1, 1, 2, 1, 1, 3, 1, 2, 2, 1, 1, 3, 1, 1, 2, 2, 1, 3, 2, 1, 2, 1, 1, 4, 1, 1, 2, 1, 1, 4, 1, 3, 2, 1, 1, 3, 1, 1, 2, 2, 2, 3, 1, 1, 3, 1, 1, 5, 1, 1, 2, 2, 1, 3, 1, 2, 2, 2, 1, 3, 1, 1, 3, 3, 1, 4, 1, 1, 2, 1, 2, 4, 1, 2, 2, 1, 1, 3, 1, 3
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,4
|
|
COMMENTS
|
Also number of divisors of 5*n-2 of form 5*k+3.
|
|
LINKS
|
|
|
FORMULA
|
G.f.: Sum_{k>0} x^k/(1 - x^(5*k-2)).
G.f.: Sum_{k>0} x^(3*k-2)/(1 - x^(5*k-4)).
|
|
MATHEMATICA
|
a[n_] := DivisorSum[5*n-2, 1 &, Mod[#, 5] == 1 &]; Array[a, 100] (* Amiram Eldar, Aug 23 2023 *)
|
|
PROG
|
(PARI) a(n) = sumdiv(5*n-2, d, d%5==1);
(PARI) a(n) = sumdiv(5*n-2, d, d%5==3);
(PARI) my(N=100, x='x+O('x^N)); Vec(sum(k=1, N, x^k/(1-x^(5*k-2))))
(PARI) my(N=100, x='x+O('x^N)); Vec(sum(k=1, N, x^(3*k-2)/(1-x^(5*k-4))))
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|