The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A001876 Number of divisors of n of the form 5k+1; a(0)=0. 18
 0, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 1, 2, 1, 1, 2, 2, 1, 2, 1, 2, 1, 1, 1, 2, 2, 2, 2, 1, 1, 3, 1, 1, 1, 1, 2, 3, 1, 2, 1, 2, 1, 3, 1, 1, 2, 2, 1, 2, 2, 2, 1, 1, 1, 2, 2, 2, 2, 2, 1, 4, 1, 1, 1, 1, 2, 3, 1, 1, 1, 2, 2, 3, 1, 2, 2, 2, 1, 3, 1, 2, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,7 LINKS T. D. Noe, Table of n, a(n) for n = 0..10000 R. A. Smith and M. V. Subbarao, The average number of divisors in an arithmetic progression, Canadian Mathematical Bulletin, Vol. 24, No. 1 (1981), pp. 37-41. FORMULA G.f.: Sum_{n>=0} x^(5n+1)/(1-x^(5n+1)). G.f.: Sum_{n>=1} x^n/(1-x^(5*n)). - Joerg Arndt, Jan 30 2011 Sum_{k=1..n} a(k) = n*log(n)/5 + c*n + O(n^(1/3)*log(n)), where c = gamma(1,5) - (1 - gamma)/5 = A256779 - (1 - A001620)/5 = 0.651363... (Smith and Subbarao, 1981). - Amiram Eldar, Nov 25 2023 MATHEMATICA CoefficientList[ Series[ Together[ Sum[ x^n/(1 - x^(5n)), {n, 110}]], {x, 0, 110}], x] (* Robert G. Wilson v, Jan 31 2011 *) a[n_] := DivisorSum[n, 1 &, Mod[#, 5] == 1 &]; a[0] = 0; Array[a, 100, 0] (* Amiram Eldar, Nov 25 2023 *) PROG (PARI) a(n) = if(n==0, 0, sumdiv(n, d, (d % 5) == 1)); \\ Michel Marcus, Feb 25 2021 CROSSREFS For numbers of divisors of n of the form 5k+i (i=1, 2, 3, 4) see: this sequence, A001877, A001878, A001899. Cf. A001620, A256779. Sequence in context: A215870 A097587 A001179 * A033182 A053797 A254011 Adjacent sequences: A001873 A001874 A001875 * A001877 A001878 A001879 KEYWORD nonn,easy AUTHOR N. J. A. Sloane STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 14 13:32 EDT 2024. Contains 375921 sequences. (Running on oeis4.)