The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A001877 Number of divisors of n of the form 5k+2; a(0) = 0. 16
 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 2, 0, 2, 0, 1, 1, 1, 0, 1, 1, 2, 0, 2, 0, 1, 1, 2, 0, 1, 0, 2, 0, 2, 1, 2, 1, 1, 0, 1, 0, 3, 0, 2, 0, 1, 1, 2, 1, 1, 1, 2, 0, 2, 0, 2, 1, 1, 0, 2, 0, 2, 1, 2, 0, 2, 1, 2, 0, 2, 0, 3, 0, 2, 0, 1, 2, 1, 0, 1, 1, 2, 0, 4, 1, 1, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,13 LINKS T. D. Noe, Table of n, a(n) for n = 0..10000 R. A. Smith and M. V. Subbarao, The average number of divisors in an arithmetic progression, Canadian Mathematical Bulletin, Vol. 24, No. 1 (1981), pp. 37-41. FORMULA G.f.: Sum_{n>=0} x^(5n+2)/(1-x^(5n+2)). G.f.: Sum_(n>=1} x^(2*n)/(1-x^(5*n))). - Joerg Arndt, Jan 30 2011 Sum_{k=1..n} a(k) = n*log(n)/5 + c*n + O(n^(1/3)*log(n)), where c = gamma(2,5) - (1 - gamma)/5 = A256780 - (1 - A001620)/5 = 0.105832... (Smith and Subbarao, 1981). - Amiram Eldar, Nov 25 2023 MATHEMATICA Join[{0}, Table[d = Divisors[n]; Length[Select[d, Mod[#, 5] == 2 &]], {n, 100}]] (* T. D. Noe, Aug 10 2012 *) Table[Count[Divisors[n], _?(Mod[#, 5]==2&)], {n, 0, 90}] (* Harvey P. Dale, May 20 2017 *) PROG (PARI) a(n) = if (n==0, 0, sumdiv(n, d, (d % 5)==2)); \\ Michel Marcus, Feb 28 2021 CROSSREFS Cf. A001876, A001878, A001899. Cf. A001620, A256780. Sequence in context: A358331 A277142 A240592 * A339896 A112712 A026608 Adjacent sequences: A001874 A001875 A001876 * A001878 A001879 A001880 KEYWORD nonn,easy,changed AUTHOR N. J. A. Sloane STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 5 13:14 EST 2023. Contains 367591 sequences. (Running on oeis4.)