login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A001878
Number of divisors of n of the form 5k+3; a(0) = 0.
16
0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 2, 0, 0, 1, 0, 1, 2, 0, 1, 1, 1, 0, 1, 0, 1, 2, 0, 0, 2, 0, 1, 2, 1, 0, 1, 1, 0, 1, 1, 0, 3, 0, 0, 1, 1, 1, 2, 0, 2, 1, 1, 0, 1, 0, 0, 2, 1, 1, 2, 0, 1, 2, 0, 0, 3, 1, 0, 1, 1, 0, 3, 0, 1, 1, 0, 1, 2, 0, 1, 1
OFFSET
0,19
LINKS
R. A. Smith and M. V. Subbarao, The average number of divisors in an arithmetic progression, Canadian Mathematical Bulletin, Vol. 24, No. 1 (1981), pp. 37-41.
FORMULA
G.f.: Sum_{n>=0} x^(5*n+3)/(1 - x^(5*n+3)).
G.f.: Sum_{k>=1} x^(3*k)/(1 - x^(5*k)). - Ilya Gutkovskiy, Sep 11 2019
Sum_{k=1..n} a(k) = n*log(n)/5 + c*n + O(n^(1/3)*log(n)), where c = gamma(3,5) - (1 - gamma)/5 = A256848 - (1 - A001620)/5 = -0.0983206... (Smith and Subbarao, 1981). - Amiram Eldar, Nov 25 2023
MATHEMATICA
Join[{0}, Table[d = Divisors[n]; Length[Select[d, Mod[#, 5] == 3 &]], {n, 100}]] (* T. D. Noe, Aug 10 2012 *)
Table[Count[Divisors[n], _?(Mod[#, 5]==3&)], {n, 0, 90}] (* Harvey P. Dale, Nov 08 2012 *)
PROG
(PARI) a(n) = if (n==0, 0, sumdiv(n, d, (d % 5)==3)); \\ Michel Marcus, Feb 28 2021
CROSSREFS
KEYWORD
nonn,easy
STATUS
approved