

A119241


Number of powerful numbers (A001694) between consecutive squares n^2 and (n+1)^2.


8



0, 1, 0, 0, 2, 0, 0, 1, 0, 1, 2, 0, 0, 2, 1, 1, 0, 1, 1, 1, 0, 2, 0, 0, 2, 0, 0, 1, 1, 0, 3, 0, 2, 0, 0, 3, 1, 0, 1, 0, 1, 1, 0, 2, 1, 2, 0, 1, 0, 1, 1, 1, 1, 0, 2, 1, 1, 2, 1, 0, 0, 2, 1, 0, 1, 0, 3, 0, 0, 2, 0, 2, 2, 1, 0, 1, 1, 1, 1, 0, 0, 2, 1, 1, 0, 0, 1, 2, 1, 1, 0, 1, 3, 1, 0, 2, 0, 2, 0, 1, 1, 1, 2, 2, 0
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,5


COMMENTS

Is there an upper bound on the number of powerful numbers between consecutive squares? Pettigrew conjectures that there is no bound. See A119242.
This sequence is unbounded. For each k >= 0 the sequence of solutions to a(x) = k has a positive asymptotic density (Shiu, 1980).  Amiram Eldar, Jul 10 2020


REFERENCES

József Sándor, Dragoslav S. Mitrinovic and Borislav Crstici, Handbook of Number Theory I, Springer Science & Business Media, 2005, chapter VI, p. 226.


LINKS

Amiram Eldar, Table of n, a(n) for n = 1..10000
P. Shiu, On the number of squarefull integers between successive squares, Mathematika, Vol. 27, No. 2 (1980), pp. 171178.


FORMULA

Asymptotic mean: lim_{n>oo} (1/n) Sum_{k=1..n} a(k) = zeta(3/2)/zeta(3)  1 = A090699  1 = 1.173254...  Amiram Eldar, Oct 24 2020


EXAMPLE

a(5) = 2 because the two powerful numbers 27 and 32 are between 25 and 36.


MATHEMATICA

Powerful[n_] := (n==1)  Min[Transpose[FactorInteger[n]][[2]]]>1; Table[Length[Select[Range[k^2+1, k^2+2k], Powerful[ # ]&]], {k, 130}]


CROSSREFS

Cf. A001694, A090699, A119242.
Sequence in context: A116357 A035168 A255647 * A001878 A056558 A320808
Adjacent sequences: A119238 A119239 A119240 * A119242 A119243 A119244


KEYWORD

nonn


AUTHOR

T. D. Noe, May 09 2006


STATUS

approved



