login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A255647
Expansion of (phi(q) * phi(q^22) + phi(q^2) * phi(q^11)) / 2 in powers of q where phi() is a Ramanujan theta function.
2
1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 2, 0, 0, 1, 0, 1, 2, 0, 0, 1, 2, 0, 1, 2, 0, 0, 2, 0, 2, 1, 0, 0, 0, 1, 0, 2, 0, 0, 0, 0, 2, 1, 0, 2, 2, 0, 1, 1, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 2, 2, 0, 1, 0, 0, 0, 0, 0, 0, 2, 1, 0, 0, 0, 2, 0, 0, 0, 0, 1, 0, 2, 0, 0, 2
OFFSET
0,14
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions.
FORMULA
a(n) is multiplicative with a(p^e) = 1 if p = 2 or 11, a(p^e) = e + 1 if Kronecker(-22, p) = +1, a(p^e) = (1 + (-1)^e)/2 if Kronecker(-22, p) = -1, and with a(0) = 1.
G.f. is a period 1 Fourier series which satisfies f(-1 / (88 t)) = 88^(1/2) (t/i) f(t) where q = exp(2 Pi i t).
G.f.: 1 + Sum_{k>0} x^k / (1 - x^k) * Kronecker(-22, k).
a(n) = A035168(n) unless n = 0.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi/sqrt(22) = 0.669789... . - Amiram Eldar, Nov 23 2023
EXAMPLE
G.f. = 1 + q + q^2 + q^4 + q^8 + q^9 + q^11 + 2*q^13 + q^16 + q^18 + 2*q^19 + ...
MATHEMATICA
a[ n_] := If[ n < 1, Boole[n == 0], DivisorSum[ n, KroneckerSymbol[ -22, #] &]];
a[ n_] := If[ n < 1, Boole[n == 0], Sum[ KroneckerSymbol[ -22, d], { d, Divisors[ n]}]];
a[ n_] := SeriesCoefficient[ (EllipticTheta[ 3, 0, q] EllipticTheta[ 3, 0, q^22] + EllipticTheta[ 3, 0, q^2] EllipticTheta[ 3, 0, q^11]) / 2, {q, 0, n}];
PROG
(PARI) {a(n) = if( n<1, n==0, sumdiv(n, d, kronecker( -22, d)))};
(PARI) {a(n) = if( n<1, n==0, direuler(p=2, n, 1 / ((1 - X) * (1 - kronecker(-22, p) * X)))[n])};
(PARI) {a(n) = my(A, p, e); if( n<1, n==0, A = factor(n); prod( k=1, matsize(A)[1], [p, e] = A[k, ]; if( p==2 || p==11, 1, kronecker( -22, p) == 1, e+1, 1-e%2)))};
CROSSREFS
KEYWORD
nonn,easy,mult
AUTHOR
Michael Somos, May 05 2015
STATUS
approved