login
A116357
Number of partitions of n into products of two successive primes (A006094).
5
0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 2, 0, 0, 1, 0, 1, 2, 0, 0, 1, 0, 1, 2, 0, 0, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 3, 0, 1, 2, 0, 2, 3, 0, 1, 2, 1, 2, 3, 0, 1, 3, 1, 3, 3, 0, 2, 3, 1, 3, 3, 1, 2, 3, 1, 3, 4, 1, 3, 3, 1, 4, 4, 1, 3, 3, 2, 4, 4, 1, 3, 5
OFFSET
1,30
COMMENTS
a(A116358(n)) = 0; a(A116359(n)) > 0;
a(n) < A101048(n).
LINKS
FORMULA
G.f.: Product_{k >= 1} 1/(1 - x^(prime(k)*prime(k+1))). - Robert Israel, Dec 09 2016
EXAMPLE
a(41) = #{2*3 + 5*7} = 1;
a(42) = #{2*3+2*3+2*3+2*3+2*3+2*3+2*3, 2*3+2*3+3*5+3*5} = 2.
MAPLE
N:= 200: # to get a(1) to a(N)
Primes:= select(isprime, [2, seq(i, i=3..1+floor(sqrt(N)), 2)]):
G:= mul(1/(1 - x^(Primes[i]*Primes[i+1])), i=1..nops(Primes)-1):
S:= series(G, x, N+1):
seq(coeff(S, x, j), j=1..N); # Robert Israel, Dec 09 2016
MATHEMATICA
m = 105; kmax = PrimePi[Sqrt[m]]; Product[1/(1-x^(Prime[k]*Prime[k+1])), {k, 1, kmax}] + O[x]^(m+1) // CoefficientList[#, x]& // Rest (* Jean-François Alcover, Mar 09 2019, after Robert Israel *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Feb 12 2006
STATUS
approved