login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A116357
Number of partitions of n into products of two successive primes (A006094).
5
0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 2, 0, 0, 1, 0, 1, 2, 0, 0, 1, 0, 1, 2, 0, 0, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 3, 0, 1, 2, 0, 2, 3, 0, 1, 2, 1, 2, 3, 0, 1, 3, 1, 3, 3, 0, 2, 3, 1, 3, 3, 1, 2, 3, 1, 3, 4, 1, 3, 3, 1, 4, 4, 1, 3, 3, 2, 4, 4, 1, 3, 5
OFFSET
1,30
COMMENTS
a(A116358(n)) = 0; a(A116359(n)) > 0;
a(n) < A101048(n).
LINKS
FORMULA
G.f.: Product_{k >= 1} 1/(1 - x^(prime(k)*prime(k+1))). - Robert Israel, Dec 09 2016
EXAMPLE
a(41) = #{2*3 + 5*7} = 1;
a(42) = #{2*3+2*3+2*3+2*3+2*3+2*3+2*3, 2*3+2*3+3*5+3*5} = 2.
MAPLE
N:= 200: # to get a(1) to a(N)
Primes:= select(isprime, [2, seq(i, i=3..1+floor(sqrt(N)), 2)]):
G:= mul(1/(1 - x^(Primes[i]*Primes[i+1])), i=1..nops(Primes)-1):
S:= series(G, x, N+1):
seq(coeff(S, x, j), j=1..N); # Robert Israel, Dec 09 2016
MATHEMATICA
m = 105; kmax = PrimePi[Sqrt[m]]; Product[1/(1-x^(Prime[k]*Prime[k+1])), {k, 1, kmax}] + O[x]^(m+1) // CoefficientList[#, x]& // Rest (* Jean-François Alcover, Mar 09 2019, after Robert Israel *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Feb 12 2006
STATUS
approved