login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A116360
Smallest number having exactly n partitions into products of two successive primes (A006094), or -1 if no such number exists.
6
1, 6, 30, 60, 90, 105, 120, 135, 143, 158, 155, 167, 173, 182, 185, 207, 197, 203, 212, 215, 221, 231, 227, 233, 239, 242, 256, 245, 251, 261, 257, 260, 263, 266, 282, 272, 275, 278, 281, 291, -1, 287, 290, 293, 296, 309, 312, 302, 305, 319, 308, 314, -1, 317, 322, 320
OFFSET
0,2
COMMENTS
If a(n) <> -1: A116357(a(n))=n and A116357(m)<>n for m<n.
From David A. Corneth, Sep 11 2024: (Start)
To prove a value -1 we need two facts:
1. For some k we have A116357(k), A116357(k+1), A116357(k+2), A116357(k+3), A116357(k+4), A116357(k+5) > n as A116357(k + 6) >= A116357(k) for all k.
2. A116357(m) != n for 1 <= m < k. (End)
LINKS
EXAMPLE
Without proof: a(40) = -1 and a(52) = -1.
a(40) = -1 as A116357(296) through A116357(296+5) are larger than 40 and for 1 <= m < 296 we have A116357(m) != 40. - David A. Corneth, Sep 11 2024
CROSSREFS
Sequence in context: A024365 A057229 A120734 * A336219 A065800 A181827
KEYWORD
sign
AUTHOR
Reinhard Zumkeller, Feb 12 2006
EXTENSIONS
Edited by D. S. McNeil, Sep 06 2010
STATUS
approved