OFFSET
0,3
COMMENTS
a(n) = 2*a(n-1) + 1 - 0^(n mod 2) * 2^floor(n/2) for n>2.
LINKS
Colin Barker, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (3,0,-6,4).
FORMULA
a(n) = 2^(n-1) + 2^floor((n+1)/2) - 1 for n > 1.
a(n) = 3*a(n-1)-6*a(n-3)+4*a(n-4) for n>5. G.f.: -x*(4*x^4-4*x^3-2*x^2+1) / ((x-1)*(2*x-1)*(2*x^2-1)). - Colin Barker, Mar 29 2013 and Feb 09 2015
PROG
(PARI) concat(0, Vec(-x*(4*x^4-4*x^3-2*x^2+1)/((x-1)*(2*x-1)*(2*x^2-1)) + O(x^100))) \\ Colin Barker, Feb 09 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Reinhard Zumkeller, Feb 04 2006
STATUS
approved