login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A116364
Row squared sums of Catalan triangle A033184.
2
1, 2, 9, 60, 490, 4534, 45689, 489920, 5508000, 64276492, 773029466, 9531003552, 119990158054, 1537695160070, 20009930706137, 263883333450760, 3521003563829212, 47470845904561648, 645960472314074400
OFFSET
0,2
COMMENTS
Number of 321-avoiding permutations in which the length of the longest increasing subsequence is n. Example: a(2)=9 because we have 12, 132, 312, 213, 231, 3142, 3412, 2143 and 2413. Column sums of triangle in A126217 (n >= 1). - Emeric Deutsch, Sep 07 2007
LINKS
FORMULA
a(n) = Sum_{k=0..n} (C(2*n-k+1,n-k)*(k+1)/(2*n-k+1))^2.
EXAMPLE
The dot product of Catalan row 4 with itself equals
a(4) = [14,14,9,4,1]*[14,14,9,4,1] = 490
which is equivalent to obtaining the final term in these repeated partial sums of Catalan row 4:
14, 14, 9, 4, 1
28, 37, 41, 42
65, 106, 148
171, 319
490
MAPLE
a:=proc(k) options operator, arrow: sum((2*k-n+1)^2*binomial(n+1, k+1)^2/(n+1)^2, n=k..2*k) end proc: 1, seq(a(k), k=1..17); # Emeric Deutsch, Sep 07 2007
MATHEMATICA
Table[Sum[(Binomial[2*n-j+1, n-j]*(j+1)/(2*n-j+1))^2, {j, 0, n}], {n, 0, 30}] (* G. C. Greubel, May 12 2019 *)
PROG
(PARI) a(n)=sum(k=0, n, ((k+1)*binomial(2*n-k+1, n-k)/(2*n-k+1))^2)
(Magma) [(&+[(Binomial(2*n-j+1, n-j)*(j+1)/(2*n-j+1))^2: j in [0..n]]): n in [0..30]]; // G. C. Greubel, May 12 2019
(Sage) [sum(( binomial(2*n-j+1, n-j)*(j+1)/(2*n-j+1) )^2 for j in (0..n)) for n in (0..30)] # G. C. Greubel, May 12 2019
(GAP) List([0..30], n-> Sum([0..n], j-> (Binomial(2*n-j+1, n-j)* (j+1)/(2*n-j+1))^2 )) # G. C. Greubel, May 12 2019
CROSSREFS
Cf. A126217.
Sequence in context: A366240 A363390 A205570 * A354314 A354496 A357683
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 04 2006
STATUS
approved