Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #14 Sep 08 2022 08:45:24
%S 1,2,9,60,490,4534,45689,489920,5508000,64276492,773029466,9531003552,
%T 119990158054,1537695160070,20009930706137,263883333450760,
%U 3521003563829212,47470845904561648,645960472314074400
%N Row squared sums of Catalan triangle A033184.
%C Number of 321-avoiding permutations in which the length of the longest increasing subsequence is n. Example: a(2)=9 because we have 12, 132, 312, 213, 231, 3142, 3412, 2143 and 2413. Column sums of triangle in A126217 (n >= 1). - _Emeric Deutsch_, Sep 07 2007
%H G. C. Greubel, <a href="/A116364/b116364.txt">Table of n, a(n) for n = 0..830</a>
%F a(n) = Sum_{k=0..n} (C(2*n-k+1,n-k)*(k+1)/(2*n-k+1))^2.
%e The dot product of Catalan row 4 with itself equals
%e a(4) = [14,14,9,4,1]*[14,14,9,4,1] = 490
%e which is equivalent to obtaining the final term in these repeated partial sums of Catalan row 4:
%e 14, 14, 9, 4, 1
%e 28, 37, 41, 42
%e 65, 106, 148
%e 171, 319
%e 490
%p a:=proc(k) options operator, arrow: sum((2*k-n+1)^2*binomial(n+1,k+1)^2/(n+1)^2,n=k..2*k) end proc: 1,seq(a(k),k=1..17); # _Emeric Deutsch_, Sep 07 2007
%t Table[Sum[(Binomial[2*n-j+1, n-j]*(j+1)/(2*n-j+1))^2, {j, 0, n}], {n, 0, 30}] (* _G. C. Greubel_, May 12 2019 *)
%o (PARI) a(n)=sum(k=0,n,((k+1)*binomial(2*n-k+1,n-k)/(2*n-k+1))^2)
%o (Magma) [(&+[(Binomial(2*n-j+1, n-j)*(j+1)/(2*n-j+1))^2: j in [0..n]]): n in [0..30]]; // _G. C. Greubel_, May 12 2019
%o (Sage) [sum(( binomial(2*n-j+1, n-j)*(j+1)/(2*n-j+1) )^2 for j in (0..n)) for n in (0..30)] # _G. C. Greubel_, May 12 2019
%o (GAP) List([0..30], n-> Sum([0..n], j-> (Binomial(2*n-j+1, n-j)* (j+1)/(2*n-j+1))^2 )) # _G. C. Greubel_, May 12 2019
%Y Cf. A033184, A116363.
%Y Cf. A126217.
%K nonn
%O 0,2
%A _Paul D. Hanna_, Feb 04 2006