OFFSET
0,9
COMMENTS
The row sums are the Catalan numbers (A000108). T(2n,n) = (C(n))^2 = A001246(n), where the C(n) are the Catalan numbers.
Also T(n,k) = Number of Dyck paths of semilength n with midpoint height = 2*k - n. David Scambler, Nov 25 2010
LINKS
Alois P. Heinz, Rows n = 0..150, flattened
E. Deutsch, A. J. Hildebrand and H. S. Wilf, Longest increasing subsequences in pattern-restricted permutations, The Electronic Journal of Combinatorics, 9(2), 2003, #R12.
FORMULA
T(n,k) = ((2*k - n + 1)*C(n+1,n-k)/(n + 1))^2 if floor((n+1)/2) <= k <= n; T(n,k) = 0 otherwise. [N.B.: floor((n+1)/2) <= k <=> n/2 <= k.]
Sum_{k=n+1..2*n+1} (-1)^(n+k+1) * T(2*n+1,k) = binomial(2*n+1,n) = A001700(n). - Peter Bala, Nov 03 2024
From Alois P. Heinz, Nov 04 2024: (Start)
Sum_{k=0..n} k * T(n,k) = A132889(n).
2 * Sum_{k=0..2n} (2n-k) * T(2n,k) = A071799(n) for n>=1. (End)
EXAMPLE
T(4,2) = 4 because we have 2143, 3142, 2413 and 3412.
Triangle starts:
1;
0, 1;
0, 1, 1;
0, 0, 4, 1;
0, 0, 4, 9, 1;
0, 0, 0, 25, 16, 1;
0, 0, 0, 25, 81, 25, 1;
...
T(4,2) = 4 because 2*2 - 4 = zero and Dyck 4-paths with midpoint height of zero are UUDDUUDD, UUDDUDUD, UDUDUUDD and UDUDUDUD.
MAPLE
T:=proc(n, k) if floor((n+1)/2)<=k and k<=n then ((2*k-n+1)*binomial(n+1, k+1)/(n+1))^2 else 0 fi end: for n from 0 to 13 do seq(T(n, k), k=0..n) od; # yields sequence in triangular form
MATHEMATICA
t[n_, k_] := If[n<=2k, ((2k-n+1)*Binomial[n+1, n-k]/(n+1))^2, 0]; Table[t[n, k], {n, 1, 10}, {k, 1, n}] // Flatten (* Amiram Eldar, Nov 26 2018 *)
PROG
(PARI) T(n, k)=if(n<=2*k, (2*k-n+1)*binomial(n+1, n-k)\(n+1))^2 \\ M. F. Hasler, Nov 24 2010
CROSSREFS
KEYWORD
AUTHOR
Emeric Deutsch, Dec 22 2006
EXTENSIONS
Row and column 0 inserted by Alois P. Heinz, Nov 04 2024
STATUS
approved