login
A126220
Number of binary trees (i.e., rooted trees where each vertex has either 0, 1, or 2 children; and, when only one child is present, it is either a right child or a left child) with n edges and no adjacent vertices of outdegree 2.
1
1, 2, 5, 14, 40, 116, 344, 1040, 3188, 9880, 30912, 97520, 309856, 990656, 3184672, 10287808, 33379072, 108724864, 355405568, 1165521408, 3833497408, 12642775424, 41799227392, 138512751360, 459973953024, 1530498526208
OFFSET
0,2
FORMULA
a(n) = A126219(n,0), i.e., row 0 of triangle A126219.
G.f.: (1 - 2z - 4z^3 - sqrt(1 - 8z^3 + 4z^2 - 4z))/(8z^4).
D-finite with recurrence (n+4)*a(n) +2*(-2*n-5)*a(n-1) +4*(n+1)*a(n-2) +4*(-2*n+1)*a(n-3)=0. - R. J. Mathar, Jun 17 2016
MAPLE
g:=(1-4*z^3-2*z-sqrt(1-8*z^3+4*z^2-4*z))/8/z^4: gser:=series(g, z=0, 35): seq(coeff(gser, z, n), n=0..30);
CROSSREFS
Cf. A126219.
Sequence in context: A036908 A293346 A273900 * A136304 A190254 A075496
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Dec 25 2006
STATUS
approved