login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A126222
Triangle read by rows: T(n,k) is the number of 2-Motzkin paths (i.e., Motzkin paths with blue and red level steps) without red level steps on the x-axis, having length n and k level steps (0 <= k <= n).
4
1, 0, 1, 1, 0, 1, 0, 4, 0, 1, 2, 0, 11, 0, 1, 0, 15, 0, 26, 0, 1, 5, 0, 69, 0, 57, 0, 1, 0, 56, 0, 252, 0, 120, 0, 1, 14, 0, 364, 0, 804, 0, 247, 0, 1, 0, 210, 0, 1800, 0, 2349, 0, 502, 0, 1, 42, 0, 1770, 0, 7515, 0, 6455, 0, 1013, 0, 1, 0, 792, 0, 11055, 0, 27940, 0, 16962, 0
OFFSET
0,8
COMMENTS
Row sums are the Catalan numbers (A000108).
A166073 appears to be a variant of A126222 where zeros are sorted to the start of each row. - R. J. Mathar, Aug 21 2010
LINKS
FORMULA
T(2n,0) = C(2n,n)/(n+1) (the Catalan numbers; A000108).
Sum_{k=0..n} k*T(n,k) = A126223(n).
G.f.: G = G(t,z) satisfies z(t + z - t^2*z)G^2 - G + 1 = 0.
EXAMPLE
T(3,1)=4 because we have BUD, UBD, URD and UDB, where U=(1,1), D=(1,-1), B=blue (1,0), R=red (1,0).
Triangle starts:
1
0,1
1,0,1
0,4,0,1
2,0,11,0,1
0,15,0,26,0,1
5,0,69,0,57,0,1
0,56,0,252,0,120,0,1
14,0,364,0,804,0,247,0,1
0,210,0,1800,0,2349,0,502,0,1
42,0,1770,0,7515,0,6455,0,1013,0,1
0,792,0,11055,0,27940,0,16962,0,2036,0,1
132,0,8217,0,57035,0,95458,0,43086,0,4083,0,1
0,3003,0,62062,0,257257,0,305812,0,106587,0,8178,0,1
429,0,37037,0,381381,0,1049685,0,931385,0,258153,0,16369,0,1
0,11440,0,328328,0,2022384,0,3962140,0,2723280,0,614520,0,32752,0,1
1430,0,163592,0,2341976,0,9591764,0,14051660,0,7699800,0,1441928,0,65519,0,1
0,43758,0,1665456,0,14275716,0,41666184,0,47352820,0,21167312,0,3342489,0,131054,0,1
4862,0,712062,0,13527852,0,77161980,0,168567444,0,152915748,0,56818743,0,7667883,0,262125,0,1
...
MAPLE
G:=(1-sqrt(1-4*z*t-4*z^2+4*z^2*t^2))/2/z/(t+z-t^2*z): Gser:=simplify(series(G, z=0, 15)): for n from 0 to 12 do P[n]:=sort(expand(coeff(Gser, z, n))) od: for n from 0 to 12 do seq(coeff(P[n], t, j), j=0..n) od; # yields sequence in triangular form
# second Maple program:
b:= proc(x, y) option remember; `if`(y>x or y<0, 0,
`if`(x=0, 1, expand(b(x-1, y)*`if`(y=0, 1, 2)*z+
b(x-1, y+1) +b(x-1, y-1))))
end:
T:= (n, k)-> coeff(b(n, 0), z, k):
seq(seq(T(n, k), k=0..n), n=0..15); # Alois P. Heinz, May 20 2014
MATHEMATICA
b[x_, y_] := b[x, y] = If[y>x || y<0, 0, If[x == 0, 1, Expand[b[x-1, y]*If[y == 0, 1, 2]*z + b[x-1, y+1] + b[x-1, y-1]]]]; T[n_, k_] := Coefficient[b[n, 0], z, k]; Table[Table[T[n, k], {k, 0, n}], {n, 0, 15}] // Flatten (* Jean-François Alcover, Feb 19 2015, after Alois P. Heinz *)
CROSSREFS
Sequence in context: A294583 A283675 A294653 * A071637 A141277 A198637
KEYWORD
nonn,tabl
AUTHOR
Emeric Deutsch, Dec 28 2006
STATUS
approved