login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A283675
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of Product_{j>=1} (1-x^j)^(j^(k*j)) in powers of x.
5
1, 1, -1, 1, -1, -1, 1, -1, -4, 0, 1, -1, -16, -23, 0, 1, -1, -64, -713, -223, 1, 1, -1, -256, -19619, -64687, -2767, 0, 1, -1, -1024, -531185, -16755517, -9688545, -42268, 1, 1, -1, -4096, -14347883, -4294403215, -30499543213, -2165715003, -759008, 0, 1, -1, -16384
OFFSET
0,9
LINKS
FORMULA
G.f. of column k: Product_{j>=1} (1-x^j)^(j^(k*j)).
A(0,k) = 1 and A(n,k) = -(1/n) * Sum_{j=1..n} (Sum_{d|j} d^(k*d+1)) * A(n-j,k) for n > 0. - Seiichi Manyama, Nov 04 2017
EXAMPLE
Square array begins:
1, 1, 1, 1, ...
-1, -1, -1, -1, ...
-1, -4, -16, -64, ...
0, -23, -713, -19619, ...
0, -223, -64687, -16755517, ...
CROSSREFS
Columns k=0..4 give A010815, A283499, A283534, A283536, A283803.
Rows n=0..1 give A000012, (-1)*A000012.
Main diagonal gives A283720.
Cf. A283674.
Sequence in context: A186372 A200893 A294583 * A294653 A126222 A071637
KEYWORD
sign,tabl
AUTHOR
Seiichi Manyama, Mar 14 2017
STATUS
approved