login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A136304
Expansion of g.f. (1-z)^2*(1-sqrt(1-4*z))/(2*z*(1 - 3*z + 2*z^2 - z^3)).
9
1, 2, 5, 14, 40, 116, 344, 1047, 3273, 10500, 34503, 115838, 396244, 1377221, 4851665, 17285662, 62173297, 225424527, 822919439, 3021713140, 11151957809, 41340655956, 153853915410, 574593145517, 2152679745351, 8087904580883, 30466311814036, 115036597198845
OFFSET
0,2
COMMENTS
Previous name was: Transform of A000108 by the T_{0,0} transformation (see link).
LINKS
FORMULA
G.f.: (1-z)^2*(1-sqrt(1-4*z))/(2*z*(1 - 3*z + 2*z^2 - z^3)).
Conjecture: (n+1)*a(n) + (-8*n+1)*a(n-1) + 3*(7*n-8)*a(n-2) + (-23*n+49)*a(n-3) + (13*n-32)*a(n-4) + 2*(-2*n+7)*a(n-5) = 0. - R. J. Mathar, Feb 29 2016
a(n) = Sum_{j=0..n} A034943(j+1)*A000108(n-j). - G. C. Greubel, Apr 19 2021
MATHEMATICA
A034943[n_]:= A034943[n]= Sum[Binomial[n+k-1, 3*k], {k, 0, n/2}];
Table[Sum[A034943[j+1]*CatalanNumber[n-j], {j, 0, n}], {n, 0, 35}] (* G. C. Greubel, Apr 19 2021 *)
PROG
(Magma)
A034943:= func< n | (&+[Binomial(n+j-1, 3*j): j in [0..Floor(n/2)]]) >;
[(&+[A034943(j+1)*Catalan(n-j): j in [0..n]]): n in [0..35]]; // G. C. Greubel, Apr 19 2021
(Sage)
def A034943(n): return sum(binomial(n+j-1, 3*j) for j in (0..n//2))
[sum(A034943(j+1)*catalan_number(n-j) for j in (0..n)) for n in (0..35)] # G. C. Greubel, Apr 19 2021
KEYWORD
nonn,easy
AUTHOR
Richard Choulet, Mar 22 2008
EXTENSIONS
New name using g.f., Joerg Arndt, Apr 20 2021
STATUS
approved