login
A097550
Number of positive words of length n in the monoid Br_3 of positive braids on 4 strands.
15
1, 3, 8, 19, 44, 102, 237, 551, 1281, 2978, 6923, 16094, 37414, 86977, 202197, 470051, 1092736, 2540303, 5905488, 13728594, 31915109, 74193627, 172479257, 400965626, 932131991, 2166943978, 5037533578, 11710844769, 27224411129, 63289077427
OFFSET
0,2
FORMULA
G.f.: (1+x^2)/(1 - 3*x+ 2*x^2 - x^3).
a(n) = term (1,1) in the 1 X 3 matrix [1,1,2].[3,1,0; -2,0,1; 1,0,0]^n. - Alois P. Heinz, Jul 24 2008
a(n) = A095263(n) + A095263(n-2). - G. C. Greubel, Apr 19 2021
MAPLE
a:= n-> (<<1|1|2>>. <<3|1|0>, <-2|0|1>, <1|0|0>>^n)[1$2]:
seq(a(n), n=0..50); # Alois P. Heinz, Jul 24 2008
MATHEMATICA
LinearRecurrence[{3, -2, 1}, {1, 3, 8}, 30] (* Harvey P. Dale, Jul 10 2019 *)
PROG
(Magma) [n le 3 select Fibonacci(2*n) else 3*Self(n-1) -2*Self(n-2) +Self(n-3): n in [1..31]]; // G. C. Greubel, Apr 19 2021
(Sage)
@CachedFunction
def A095263(n): return sum( binomial(n+j+2, 3*j+2) for j in (0..n//2) )
def A097550(n): return A095263(n) +A095263(n-2)
[A097550(n) for n in (0..30)] # G. C. Greubel, Apr 19 2021
KEYWORD
nonn
AUTHOR
D n Verma, Aug 16 2004
EXTENSIONS
More terms from Ryan Propper, Sep 27 2005
STATUS
approved