OFFSET
0,2
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (3,-2,1).
FORMULA
G.f.: (1+x^2)/(1 - 3*x+ 2*x^2 - x^3).
a(n) = term (1,1) in the 1 X 3 matrix [1,1,2].[3,1,0; -2,0,1; 1,0,0]^n. - Alois P. Heinz, Jul 24 2008
MAPLE
a:= n-> (<<1|1|2>>. <<3|1|0>, <-2|0|1>, <1|0|0>>^n)[1$2]:
seq(a(n), n=0..50); # Alois P. Heinz, Jul 24 2008
MATHEMATICA
LinearRecurrence[{3, -2, 1}, {1, 3, 8}, 30] (* Harvey P. Dale, Jul 10 2019 *)
PROG
(Magma) [n le 3 select Fibonacci(2*n) else 3*Self(n-1) -2*Self(n-2) +Self(n-3): n in [1..31]]; // G. C. Greubel, Apr 19 2021
(Sage)
@CachedFunction
def A095263(n): return sum( binomial(n+j+2, 3*j+2) for j in (0..n//2) )
[A097550(n) for n in (0..30)] # G. C. Greubel, Apr 19 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
D n Verma, Aug 16 2004
EXTENSIONS
More terms from Ryan Propper, Sep 27 2005
STATUS
approved