|
|
A097553
|
|
Number of positive words of length n in the monoid Br_6 of positive braids on 7 strands.
|
|
7
|
|
|
1, 6, 27, 101, 346, 1131, 3611, 11396, 35761, 111906, 349700, 1092039, 3409031, 10640179, 33206991, 103631414, 323402952, 1009233980, 3149469548, 9828376731, 30670834516, 95712596642, 298684343689, 932085486213, 2908700435744
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
LINKS
|
|
|
FORMULA
|
G.f.: (1 +x^2)^4/(1 -6*x +13*x^2 -17*x^3 +17*x^4 -11*x^5 +5*x^6 -x^7).
|
|
MATHEMATICA
|
CoefficientList[Series[(1+n^2)^4/(1-6n+13n^2-17n^3+17n^4-11n^5+5n^6-n^7), {n, 0, 30}], n] (* Harvey P. Dale, Sep 27 2019 *)
LinearRecurrence[{6, -13, 17, -17, 11, -5, 1}, {1, 6, 27, 101, 346, 1131, 3611, 11396, 35761}, 40] (* G. C. Greubel, Apr 20 2021 *)
|
|
PROG
|
(Magma)
R<x>:=PowerSeriesRing(Integers(), 50);
Coefficients(R!( (1+x^2)^4/(1-6*x+13*x^2-17*x^3+17*x^4-11*x^5+5*x^6-x^7) )); // G. C. Greubel, Apr 20 2021
(Sage)
P.<x> = PowerSeriesRing(ZZ, prec)
return P( (1+x^2)^4/(1-6*x+13*x^2-17*x^3+17*x^4-11*x^5+5*x^6-x^7) ).list()
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|