login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of g.f. (1-z)^2*(1-sqrt(1-4*z))/(2*z*(1 - 3*z + 2*z^2 - z^3)).
9

%I #29 Sep 08 2022 08:45:32

%S 1,2,5,14,40,116,344,1047,3273,10500,34503,115838,396244,1377221,

%T 4851665,17285662,62173297,225424527,822919439,3021713140,11151957809,

%U 41340655956,153853915410,574593145517,2152679745351,8087904580883,30466311814036,115036597198845

%N Expansion of g.f. (1-z)^2*(1-sqrt(1-4*z))/(2*z*(1 - 3*z + 2*z^2 - z^3)).

%C Previous name was: Transform of A000108 by the T_{0,0} transformation (see link).

%H G. C. Greubel, <a href="/A136304/b136304.txt">Table of n, a(n) for n = 0..1000</a>

%H Richard Choulet, <a href="https://www.apmep.fr/IMG/pdf/curtz1.pdf">Curtz-like transformation</a>.

%F G.f.: (1-z)^2*(1-sqrt(1-4*z))/(2*z*(1 - 3*z + 2*z^2 - z^3)).

%F Conjecture: (n+1)*a(n) + (-8*n+1)*a(n-1) + 3*(7*n-8)*a(n-2) + (-23*n+49)*a(n-3) + (13*n-32)*a(n-4) + 2*(-2*n+7)*a(n-5) = 0. - _R. J. Mathar_, Feb 29 2016

%F a(n) = Sum_{j=0..n} A034943(j+1)*A000108(n-j). - _G. C. Greubel_, Apr 19 2021

%t A034943[n_]:= A034943[n]= Sum[Binomial[n+k-1, 3*k], {k, 0, n/2}];

%t Table[Sum[A034943[j+1]*CatalanNumber[n-j], {j,0,n}], {n,0,35}] (* _G. C. Greubel_, Apr 19 2021 *)

%o (Magma)

%o A034943:= func< n | (&+[Binomial(n+j-1, 3*j): j in [0..Floor(n/2)]]) >;

%o [(&+[A034943(j+1)*Catalan(n-j): j in [0..n]]): n in [0..35]]; // _G. C. Greubel_, Apr 19 2021

%o (Sage)

%o def A034943(n): return sum(binomial(n+j-1,3*j) for j in (0..n//2))

%o [sum(A034943(j+1)*catalan_number(n-j) for j in (0..n)) for n in (0..35)] # _G. C. Greubel_, Apr 19 2021

%Y Cf. A097550, A135364, A136302, A136303, A136305, A137229, A137234, A137249.

%Y Cf. A000108, A034943.

%K nonn,easy

%O 0,2

%A _Richard Choulet_, Mar 22 2008

%E New name using g.f., _Joerg Arndt_, Apr 20 2021