login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A034943
Binomial transform of Padovan sequence A000931.
23
1, 1, 1, 2, 5, 12, 28, 65, 151, 351, 816, 1897, 4410, 10252, 23833, 55405, 128801, 299426, 696081, 1618192, 3761840, 8745217, 20330163, 47261895, 109870576, 255418101, 593775046, 1380359512, 3208946545
OFFSET
0,4
COMMENTS
Trisection of the Padovan sequence: a(n) = A000931(3n). - Paul Barry, Jul 06 2004
a(n+1) gives diagonal sums of Riordan array (1/(1-x),x/(1-x)^3). - Paul Barry, Oct 11 2005
a(n+2) is the sum, over all Boolean n-strings, of the product of the lengths of the runs of 1. For example, the Boolean 7-string (0,1,1,0,1,1,1) has two runs of 1s. Their lengths, 2 and 3, contribute a product of 6 to a(9). The 8 Boolean 3-strings contribute to a(5) as follows: 000 (empty product), 001, 010, 100, 101 all contribute 1, 011 and 110 contribute 2, 111 contributes 3. - David Callan, Nov 29 2007
[a(n), a(n+1), a(n+2)], n > 0, = [0,1,0; 0,0,1; 1,-2,3]^n * [1,1,1]. - Gary W. Adamson, Mar 27 2008
Without the initial 1 and 1: 1, 2, 5, 12, 28, this is also the transform of 1 by the T_{1,0} transformation; see Choulet link. - Richard Choulet, Apr 11 2009
Without the first 1: transform of 1 by T_{0,0} transformation (see Choulet link). - Richard Choulet, Apr 11 2009
Starting (1, 2, 5, 12, ...) = INVERT transform of (1, 1, 2, 3, 4, 5, ...) and row sums of triangle A159974. - Gary W. Adamson, Apr 28 2009
a(n+1) is also the number of 321-avoiding separable permutations. (A permutation is separable if it avoids both 2413 and 3142.) - Vince Vatter, Sep 21 2009
a(n+1) is an eigensequence of the sequence array for (1,1,2,3,4,5,...). - Paul Barry, Nov 03 2010
Equals the INVERTi transform of A055588: (1, 2, 4, 9, 22, 56, ...) - Gary W. Adamson, Apr 01 2011
The Ca3 sums, see A180662, of triangle A194005 equal the terms of this sequence without a(0) and a(1). - Johannes W. Meijer, Aug 16 2011
Without the initial 1, a(n) = row sums of A182097(n)*A007318(n,k); i.e., a Triangular array T(n,k) multiplying the binomial (Pascal's) triangle by the Padovan sequence where a(0) = 1, a(1) = 0 and a(2) = 1. - Bob Selcoe, Jun 28 2013
a(n+1) is the top left entry of the n-th power of any of the 3 X 3 matrices [1, 1, 1; 0, 1, 1; 1, 0, 1] or [1, 1, 0; 1, 1, 1; 1, 0, 1] or [1, 1, 1; 1, 1, 0; 0, 1, 1] or [1, 0, 1; 1, 1, 0; 1, 1, 1]. - R. J. Mathar, Feb 03 2014
a(n) is the top left entry of the n-th power of the 3 X 3 matrix [1, 0, 1; 1, 1, 1; 0, 1, 1] or of the 3 X 3 matrix [1, 1, 0; 0, 1, 1; 1, 1, 1]. - R. J. Mathar, Feb 03 2014
Number of sequences (e(1), ..., e(n-1)), 0 <= e(i) < i, such that there is no triple i < j < k with e(i) != e(j) < e(k) and e(i) <= e(k). [Martinez and Savage, 2.8] - Eric M. Schmidt, Jul 17 2017
a(n+1) is the number of words of length n over the alphabet {0,1,2} that do not contain the substrings 01 or 12 and do not start with a 2 and do not end with a 0. - Yiseth K. Rodríguez C., Sep 11 2020
LINKS
Miklos Bona and Rebecca Smith, Pattern avoidance in permutations and their squares, arXiv:1901.00026 [math.CO], 2018. See H(z), Ex. 4.1.
Richard Choulet, Curtz like Transformation
Michael Dairyko, Samantha Tyner, Lara Pudwell, and Casey Wynn, Non-contiguous pattern avoidance in binary trees, Electron. J. Combin. 19 (2012), no. 3, Paper 22, 21 pp. MR2967227. - From N. J. A. Sloane, Feb 01 2013
Stoyan Dimitrov, Sorting by shuffling methods and a queue, arXiv:2103.04332 [math.CO], 2021.
Phan Thuan Do, Thi Thu Huong Tran, and Vincent Vajnovszki, Exhaustive generation for permutations avoiding a (colored) regular sets of patterns, arXiv:1809.00742 [cs.DM], 2018.
Brian Hopkins and Hua Wang, Restricted Color n-color Compositions, arXiv:2003.05291 [math.CO], 2020.
Jia Huang and Erkko Lehtonen, Associative-commutative spectra for some varieties of groupoids, arXiv:2401.15786 [math.CO], 2024. See p. 18.
H. Magnusson and H. Ulfarsson, Algorithms for discovering and proving theorems about permutation patterns, arXiv preprint arXiv:1211.7110 [math.CO], 2012.
Megan A. Martinez and Carla D. Savage, Patterns in Inversion Sequences II: Inversion Sequences Avoiding Triples of Relations, arXiv:1609.08106 [math.CO], 2016
Vincent Vatter, Finding regular insertion encodings for permutation classes, arXiv:0911.2683 [math.CO], 2009.
Chunyan Yan and Zhicong Lin, Inversion sequences avoiding pairs of patterns, arXiv:1912.03674 [math.CO], 2019.
FORMULA
a(n) = 3*a(n-1) - 2*a(n-2) + a(n-3).
a(n) = Sum_{k=0..floor(n/2)} binomial(n+k-1, 3*k). - Paul Barry, Jul 06 2004
G.f.: (1 - 2*x)/(1 - 3*x + 2*x^2 - x^3). - Paul Barry, Jul 06 2005
G.f.: 1 + x / (1 - x / (1 - x / (1 - x / (1 + x / (1 - x))))). - Michael Somos, Mar 31 2012
a(-1 - n) = A185963(n). - Michael Somos, Mar 31 2012
a(n) = A095263(n) - 2*A095263(n-1). - G. C. Greubel, Apr 22 2023
EXAMPLE
G.f. = 1 + x + x^2 + 2*x^3 + 5*x^4 + 12*x^5 + 28*x^6 + 65*x^7 + 151*x^8 + ...
MAPLE
A034943 := proc(n): add(binomial(n+k-1, 3*k), k=0..floor(n/2)) end: seq(A034943(n), n=0..28); # Johannes W. Meijer, Aug 16 2011
MATHEMATICA
LinearRecurrence[{3, -2, 1}, {1, 1, 1}, 30] (* Harvey P. Dale, Aug 11 2017 *)
PROG
(Magma) [n le 3 select 1 else 3*Self(n-1)-2*Self(n-2)+Self(n-3): n in [1..40]]; // Vincenzo Librandi, Feb 14 2012
(PARI) {a(n) = if( n<1, n = 0-n; polcoeff( (1 - x + x^2) / (1 - 2*x + 3*x^2 - x^3) + x * O(x^n), n), n = n-1; polcoeff( (1 - x + x^2) / (1 - 3*x + 2*x^2 - x^3) + x * O(x^n), n))} /* Michael Somos, Mar 31 2012 */
(SageMath)
@CachedFunction
def a(n): # a = A034943
if (n<3): return 1
else: return 3*a(n-1) - 2*a(n-2) + a(n-3)
[a(n) for n in range(51)] # G. C. Greubel, Apr 22 2023
CROSSREFS
First differences of A052921.
Sequence in context: A019485 A018914 A129519 * A181984 A227807 A206721
KEYWORD
nonn,easy
EXTENSIONS
Edited by Charles R Greathouse IV, Apr 20 2010
STATUS
approved