login
A034940
Number of rooted labeled triangular cacti with 2n+1 nodes (n triangles).
10
1, 3, 75, 5145, 688905, 152193195, 50174679555, 23089081640625, 14140034726843025, 11119632520038117075, 10920803043967635894075, 13100477280449146440878025, 18849023772776126861572265625, 32038907667175368299033846026875, 63516199119599233704934379969701875
OFFSET
0,2
REFERENCES
F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Camb. 1998, p. 307. (4.2.44)
FORMULA
a(n) = b(2*n+1) where e.g.f. of b satisfies B(x)=x*exp(B(x)^2/2).
The closed form a(n) = (2n-1)!! (2n+1)^n can be obtained from the generating function. - Noam D. Elkies, Dec 16 2002
From Peter Bala, Jul 31 2012: (Start)
E.g.f. A(x) = series reversion of x*exp(-1/2*x^2) = sum {n >= 0} a(n)*x^(2*n+1)/(2*n+1)! = x + 3*x^3/3! + 75*x^5/5! + .... The Lagrange inversion formula gives a(n) = (2*n+1)^n*(2*n)!/(2^n*n!).
A(x)^2 = T(x^2), where T denotes the tree function T(x) := sum {n >= 1} n^(n-1)*x^n/n!. A(x)^r = sum {n >= 0} r*(2*n+r)^(n-1)*x^(2*n+r)/(2^n*n!).
x = A(x)*exp(-1/2*A(x)^2). dA/dx = exp(1/2*A^2)/(1-A^2).
Let the function F(x) = A(exp(x)). Then dF/dx = F/(1-F^2). More generally, (d/dx)^(n+1)(F) is a rational function in F(x) given by (d/dx)^(n+1)(F) = F*R(n,F^2)/(1-F^2)^(2*n+1), where R(n,x) is the n-th row generating polynomial of A214406.
(End)
EXAMPLE
E.g. a(3) = 5!! 7^3 = (1*3*5) * 343 = 5145.
From Peter Bala, Jul 31 2012: (Start)
Relation with rows of A214406: F(x) := A(exp(x)).
(d/dx)^1(F) = F/(1-F^2)
(d/dx)^2(F)) = F*(1 + F^2)/(1 - F^2)^3
(d/dx)^3(F)) = F*(1 + 8*F^2 + 3*F^4)/(1 - F^2)^5
(d/dx)^4(F)) = F*(1 + 33*F^2 + 71*F^4 + 15*F^6)/(1 - F^2)^7
(End)
MATHEMATICA
a[n_] := (2*n-1)!!*(2*n+1)^n; Table[a[n], {n, 0, 11}] (* Jean-François Alcover, May 13 2013, after Noam D. Elkies *)
PROG
(PARI) a(n) = (2*n+1)^n*(2*n)!/(2^n*n!); \\ Andrew Howroyd, Aug 30 2018
CROSSREFS
KEYWORD
nonn,eigen
AUTHOR
Christian G. Bower, Oct 15 1998
EXTENSIONS
a(10) corrected by Jean-François Alcover, May 13 2013
a(12)-a(14) from Alois P. Heinz, Jul 08 2015
STATUS
approved