|
|
A034938
|
|
Primes p such that (p-3)/2 is a prime of the form 6k-1.
|
|
1
|
|
|
13, 37, 61, 97, 109, 181, 229, 277, 337, 349, 397, 457, 541, 709, 769, 937, 1009, 1021, 1117, 1129, 1201, 1237, 1297, 1321, 1489, 1549, 1597, 1621, 1657, 1777, 1861, 2029, 2221, 2377, 2389, 2437, 2521, 2557, 2617, 2749, 2857, 3001, 3049
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Related to hyperperfect numbers of a certain form (form 1, theorem 1 in "A Study of Hyperperfect Numbers").
|
|
LINKS
|
Table of n, a(n) for n=1..43.
J. S. McCranie, A study of hyperperfect numbers, J. Int. Seqs. Vol. 3 (2000) #P00.1.3.
|
|
MATHEMATICA
|
Select[Prime[Range[500]], Mod[(#-3)/2, 6]==5&&PrimeQ[(#-3)/2]&] (* Harvey P. Dale, Jul 27 2019 *)
|
|
CROSSREFS
|
Cf. A038536 and A034937.
Sequence in context: A141122 A068228 A031339 * A139530 A138368 A118071
Adjacent sequences: A034935 A034936 A034937 * A034939 A034940 A034941
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
Jud McCranie
|
|
EXTENSIONS
|
Definition corrected by Jud McCranie, Jul 26 2019
|
|
STATUS
|
approved
|
|
|
|