login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A003080
Number of rooted triangular cacti with 2n+1 nodes (n triangles).
(Formerly M1448)
7
1, 1, 2, 5, 13, 37, 111, 345, 1105, 3624, 12099, 41000, 140647, 487440, 1704115, 6002600, 21282235, 75890812, 272000538, 979310627, 3540297130, 12845634348, 46764904745, 170767429511, 625314778963, 2295635155206, 8447553316546, 31153444946778, 115122389065883
OFFSET
0,3
COMMENTS
a(n) is also the number of isomorphism classes of Fano Bott manifolds of complex dimension n (see [Cho-Lee-Masuda-Park]). - Eunjeong Lee, Jun 29 2021
REFERENCES
F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Camb. 1998, p. 305, (4.2.34).
F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 73, (3.4.20).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Maryam Bahrani and Jérémie Lumbroso, Enumerations, Forbidden Subgraph Characterizations, and the Split-Decomposition, arXiv:1608.01465 [math.CO], 2016.
Yunhyung Cho, Eunjeong Lee, Mikiya Masuda, and Seonjeong Park, On the enumeration of Fano Bott manifolds, arXiv:2106.12788 [math.AG], 2021. See Table 1 p. 8.
P. Leroux and B. Miloudi, Généralisations de la formule d'Otter, Ann. Sci. Math. Québec, Vol. 16, No. 1 (1992) pp. 53-80.
P. Leroux and B. Miloudi, Généralisations de la formule d'Otter, Ann. Sci. Math. Québec, Vol. 16, No. 1, pp. 53-80, 1992. (Annotated scanned copy)
N. J. A. Sloane, Transforms
FORMULA
a(n)=b(2n+1). b shifts left under transform T where Tb = EULER(E_2(b)). E_2(b) has g.f. (B(x^2)+B(x)^2)/2.
a(n) ~ c * d^n / n^(3/2), where d = 3.90053254788870206167147120260433375638561926371844809... and c = 0.4861961460367182791173441493565088408563977498871021... - Vaclav Kotesovec, Jul 01 2021
MATHEMATICA
terms = 30;
nmax = 2 terms;
A[_] = 0; Do[A[x_] = x Exp[Sum[(A[x^n]^2 + A[x^(2n)])/(2n), {n, 1, terms}]] + O[x]^nmax // Normal, {nmax}];
DeleteCases[CoefficientList[A[x], x], 0] (* Jean-François Alcover, Sep 02 2018 *)
CROSSREFS
Column k=3 of A332648.
Sequence in context: A151416 A193114 A114509 * A149854 A151442 A263529
KEYWORD
nonn,eigen,nice
EXTENSIONS
Sequence extended by Paul Zimmermann, Mar 15 1996
Additional comments from Christian G. Bower
STATUS
approved