login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A003082
Number of multigraphs with 4 nodes and n edges.
(Formerly M2543)
10
1, 1, 3, 6, 11, 18, 32, 48, 75, 111, 160, 224, 313, 420, 562, 738, 956, 1221, 1550, 1936, 2405, 2958, 3609, 4368, 5260, 6279, 7462, 8814, 10356, 12104, 14093, 16320, 18834, 21645, 24783, 28272, 32158, 36442, 41187, 46410, 52151, 58443, 65345, 72864
OFFSET
0,3
COMMENTS
Also, expansion of Molien series for representation Sym^2(R^n) of the automorphism group of the lattice D_3.
REFERENCES
CRC Handbook of Combinatorial Designs, 1996, p. 650.
J. L. Gross and J. Yellen, eds., Handbook of Graph Theory, CRC Press, 2004; p. 517.
F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 88, (4.1.19).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Axel Kleinschmidt and Valentin Verschinin, Tetrahedral modular graph functions, arXiv:1706.01889 [hep-th], 2017, p. 20.
P. Sarnak and A. Strömbergsson, Minima of Epstein's zeta function and heights of flat tori, Inventiones mathematicae, July 2006, Volume 165, Issue 1, pp 115-151.
Index entries for linear recurrences with constant coefficients, signature (2,0,0,-2,-2,3,0,3,-2,-2,0,0,2,-1).
FORMULA
G.f.: (1-x+x^2+x^4+x^6-x^7+x^8)/((1-x)^6*(1+x)^2*(1+x^2)*(1+x+x^2)^2).
a(n) = 2*a(n-1) - 2*a(n-4) - 2*a(n-5) + 3*a(n-6) + 3*a(n-8) - 2*a(n-9) - 2*a(n-10) + 2*a(n-13) - a(n-14). - Wesley Ivan Hurt, Apr 20 2021
a(n) = (1/17280)*((3 + n)*(3175 + 2088*n + 564*n^2 + 72*n^3 + 6*n^4 + 945*(-1)^n) + 540*I^n*(1 + (-1)^n)) + (1/27)*(3*ChebyshevU(n, -1/2) + 2*ChebyshevU(n-1, -1/2) + 3*(-1)^n*(A099254(n) - A099254(n-1))). - G. C. Greubel, Nov 04 2022
MATHEMATICA
CoefficientList[Series[PairGroupIndex[SymmetricGroup[4], s] /.Table[s[i] -> 1/(1 - x^i), {i, 1, 4}], {x, 0, 40}], x] (* Geoffrey Critzer, Nov 10 2011 *)
LinearRecurrence[{2, 0, 0, -2, -2, 3, 0, 3, -2, -2, 0, 0, 2, -1}, {1, 1, 3, 6, 11, 18, 32, 48, 75, 111, 160, 224, 313, 420}, 50] (* Harvey P. Dale, Oct 09 2016 *)
PROG
(PARI) Vec((x^8-x^7+x^6+x^4+x^2-x+1)/((x-1)^6*(x+1)^2*(x^2+1)*(x^2+x+1)^2) + O(x^100)) \\ Colin Barker, Apr 02 2015
(Magma) R<x>:=PowerSeriesRing(Integers(), 50); Coefficients(R!( (1-x+x^2+x^4+x^6-x^7+x^8)/((1-x)^6*(1+x)^2*(1+x^2)*(1+x+x^2)^2) )); // G. C. Greubel, Nov 04 2022
(SageMath)
def A003082_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( (1-x+x^2+x^4+x^6-x^7+x^8)/((1-x)^6*(1+x)^2*(1+x^2)*(1+x+x^2)^2) ).list()
A003082_list(50) # G. C. Greubel, Nov 04 2022
CROSSREFS
Cf. A001399, A014395 (5 nodes), A014396, A014397, A014398, row 4 of A192517.
Cf. A290778 (connected).
Sequence in context: A347415 A053992 A052825 * A058053 A264923 A321381
KEYWORD
easy,nonn,nice
EXTENSIONS
Entry improved by comments from Vladeta Jovovic, Dec 23 1999
STATUS
approved