OFFSET
0,3
COMMENTS
Also, expansion of Molien series for representation Sym^2(R^n) of the automorphism group of the lattice D_3.
REFERENCES
CRC Handbook of Combinatorial Designs, 1996, p. 650.
J. L. Gross and J. Yellen, eds., Handbook of Graph Theory, CRC Press, 2004; p. 517.
F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 88, (4.1.19).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
T. D. Noe, Table of n, a(n) for n = 0..1000
Axel Kleinschmidt and Valentin Verschinin, Tetrahedral modular graph functions, arXiv:1706.01889 [hep-th], 2017, p. 20.
P. Sarnak and A. Strömbergsson, Minima of Epstein's zeta function and heights of flat tori, Inventiones mathematicae, July 2006, Volume 165, Issue 1, pp 115-151.
Index entries for linear recurrences with constant coefficients, signature (2,0,0,-2,-2,3,0,3,-2,-2,0,0,2,-1).
FORMULA
G.f.: (1-x+x^2+x^4+x^6-x^7+x^8)/((1-x)^6*(1+x)^2*(1+x^2)*(1+x+x^2)^2).
a(n) = 2*a(n-1) - 2*a(n-4) - 2*a(n-5) + 3*a(n-6) + 3*a(n-8) - 2*a(n-9) - 2*a(n-10) + 2*a(n-13) - a(n-14). - Wesley Ivan Hurt, Apr 20 2021
a(n) = (1/17280)*((3 + n)*(3175 + 2088*n + 564*n^2 + 72*n^3 + 6*n^4 + 945*(-1)^n) + 540*I^n*(1 + (-1)^n)) + (1/27)*(3*ChebyshevU(n, -1/2) + 2*ChebyshevU(n-1, -1/2) + 3*(-1)^n*(A099254(n) - A099254(n-1))). - G. C. Greubel, Nov 04 2022
MATHEMATICA
CoefficientList[Series[PairGroupIndex[SymmetricGroup[4], s] /.Table[s[i] -> 1/(1 - x^i), {i, 1, 4}], {x, 0, 40}], x] (* Geoffrey Critzer, Nov 10 2011 *)
LinearRecurrence[{2, 0, 0, -2, -2, 3, 0, 3, -2, -2, 0, 0, 2, -1}, {1, 1, 3, 6, 11, 18, 32, 48, 75, 111, 160, 224, 313, 420}, 50] (* Harvey P. Dale, Oct 09 2016 *)
PROG
(PARI) Vec((x^8-x^7+x^6+x^4+x^2-x+1)/((x-1)^6*(x+1)^2*(x^2+1)*(x^2+x+1)^2) + O(x^100)) \\ Colin Barker, Apr 02 2015
(Magma) R<x>:=PowerSeriesRing(Integers(), 50); Coefficients(R!( (1-x+x^2+x^4+x^6-x^7+x^8)/((1-x)^6*(1+x)^2*(1+x^2)*(1+x+x^2)^2) )); // G. C. Greubel, Nov 04 2022
(SageMath)
def A003082_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( (1-x+x^2+x^4+x^6-x^7+x^8)/((1-x)^6*(1+x)^2*(1+x^2)*(1+x+x^2)^2) ).list()
A003082_list(50) # G. C. Greubel, Nov 04 2022
CROSSREFS
KEYWORD
easy,nonn,nice
AUTHOR
EXTENSIONS
Entry improved by comments from Vladeta Jovovic, Dec 23 1999
STATUS
approved