login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A052825
A simple grammar: partial sums of A008965.
2
0, 0, 1, 3, 6, 11, 18, 31, 50, 85, 144, 251, 438, 789, 1420, 2601, 4792, 8907, 16618, 31219, 58814, 111301, 211180, 401925, 766648, 1465899, 2808082, 5389509, 10360576, 19948155, 38460946, 74253513, 143527180, 277746975, 538048150, 1043342277, 2025049108
OFFSET
0,4
LINKS
FORMULA
G.f.: (x/(x-1))*Sum_{j>=1} (A000010(j)/j)*log((x^j-1)/(2*x^j-1)).
a(n) ~ 2^n/n * (1 + 2/n + 6/n^2 + 26/n^3 + 150/n^4 + 1082/n^5 + 9366/n^6 + 94586/n^7 + 1091670/n^8 + 14174522/n^9 + 204495126/n^10 + ...), for coefficients see A000629. - Vaclav Kotesovec, Jun 03 2019
MAPLE
spec := [S, {B=Cycle(C), C=Sequence(Z, 1 <= card), S=Prod(C, B)}, unlabeled]: seq(combstruct[count](spec, size=n), n=0..20);
h := n -> add(numtheory:-phi(j)/j*log((x^j-1)/(2*x^j-1)), j=1..n):
seq(coeff(series((x/(1-x))*h(n), x, n+1), x, n), n=0..36); # Peter Luschny, Oct 25 2015
MATHEMATICA
m = 40;
gf = (x/(1-x))*Sum[EulerPhi[j]/j*Log[(x^j-1)/(2*x^j-1)], {j, 1, m}] + O[x]^m;
CoefficientList[gf, x] (* Jean-François Alcover, Jun 03 2019 *)
PROG
(Sage) var('x'); a = lambda n: taylor(x/(1-x) * sum([taylor(euler_phi(i)/i * log((x^i - 1)/(2*x^i - 1)), x, 0, n) for i in range(1, n+1)]), x, 0, n).coefficient(x^n) # Danny Rorabaugh, Oct 25 2015
CROSSREFS
Sequence in context: A279100 A347415 A053992 * A003082 A058053 A264923
KEYWORD
easy,nonn,changed
AUTHOR
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
EXTENSIONS
More terms from Danny Rorabaugh, Oct 25 2015
STATUS
approved