OFFSET
0,3
REFERENCES
Andrews, George E., Generalized Frobenius partitions, Memoirs of the American Mathematical Society, Number 301, May 1984. See phi_3(n), page 41.
FORMULA
Expansion of q^(1/8) * eta(q^6)^5 / (eta(q) * eta(q^2) * eta(q^3)^2 * eta(q^12)^2) in powers of q. - Michael Somos, Mar 09 2011
Euler transform of period 12 sequence [ 1, 2, 3, 2, 1, -1, 1, 2, 3, 2, 1, 1, ...]. - Michael Somos, Mar 09 2011
G.f.: Product_{k>0} (1 - x^(12*k - 6)) / ( (1 - x^(6*k - 5)) * (1 - x^(6*k - 4))^2 * (1 - x^(6*k - 3))^3 * (1 - x^(6*k - 2))^2 * (1 - x^(6*k - 1)) *(1 - x^(12*k)) ). [Andrews, p. 11, equation (5.10)]
a(n) ~ exp(sqrt(n)*Pi)/(4*sqrt(6)*n). - Vaclav Kotesovec, Nov 13 2016
EXAMPLE
1 + x + 3*x^2 + 6*x^3 + 11*x^4 + 18*x^5 + 31*x^6 + 49*x^7 + 78*x^8 + ...
1/q + q^7 + 3*q^15 + 6*q^23 + 11*q^31 + 18*q^39 + 31*q^47 + 49*q^55 + 78*q^63 + ...
MATHEMATICA
nmax = 50; CoefficientList[Series[Product[(1 + x^(6*k - 3)) / ( (1 - x^(6*k - 5)) * (1 - x^(6*k - 4))^2 * (1 - x^(6*k - 3))^2 * (1 - x^(6*k - 2))^2 * (1 - x^(6*k - 1)) * (1 - x^(12*k))), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 13 2016 *)
PROG
(PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^6 + A)^5 / (eta(x + A) * eta(x^2 + A) * eta(x^3 + A)^2 * eta(x^12 + A)^2), n))} /* Michael Somos, Mar 09 2011 */
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
James A. Sellers, Apr 04 2000
STATUS
approved