login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A053992
The number phi_3(n) of Frobenius partitions that allow up to 3 repetitions of an integer in a row.
0
1, 1, 3, 6, 11, 18, 31, 49, 78, 119, 180, 267, 394, 567, 813, 1151, 1616, 2244, 3099, 4240, 5769, 7790, 10462, 13965, 18552, 24502, 32223, 42176, 54972, 71340, 92242, 118800, 152481, 195017, 248621, 315945, 400315, 505694, 637068, 800380, 1002964
OFFSET
0,3
REFERENCES
Andrews, George E., Generalized Frobenius partitions, Memoirs of the American Mathematical Society, Number 301, May 1984. See phi_3(n), page 41.
FORMULA
Expansion of q^(1/8) * eta(q^6)^5 / (eta(q) * eta(q^2) * eta(q^3)^2 * eta(q^12)^2) in powers of q. - Michael Somos, Mar 09 2011
Euler transform of period 12 sequence [ 1, 2, 3, 2, 1, -1, 1, 2, 3, 2, 1, 1, ...]. - Michael Somos, Mar 09 2011
G.f.: Product_{k>0} (1 - x^(12*k - 6)) / ( (1 - x^(6*k - 5)) * (1 - x^(6*k - 4))^2 * (1 - x^(6*k - 3))^3 * (1 - x^(6*k - 2))^2 * (1 - x^(6*k - 1)) *(1 - x^(12*k)) ). [Andrews, p. 11, equation (5.10)]
a(n) ~ exp(sqrt(n)*Pi)/(4*sqrt(6)*n). - Vaclav Kotesovec, Nov 13 2016
EXAMPLE
1 + x + 3*x^2 + 6*x^3 + 11*x^4 + 18*x^5 + 31*x^6 + 49*x^7 + 78*x^8 + ...
1/q + q^7 + 3*q^15 + 6*q^23 + 11*q^31 + 18*q^39 + 31*q^47 + 49*q^55 + 78*q^63 + ...
MATHEMATICA
nmax = 50; CoefficientList[Series[Product[(1 + x^(6*k - 3)) / ( (1 - x^(6*k - 5)) * (1 - x^(6*k - 4))^2 * (1 - x^(6*k - 3))^2 * (1 - x^(6*k - 2))^2 * (1 - x^(6*k - 1)) * (1 - x^(12*k))), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 13 2016 *)
PROG
(PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^6 + A)^5 / (eta(x + A) * eta(x^2 + A) * eta(x^3 + A)^2 * eta(x^12 + A)^2), n))} /* Michael Somos, Mar 09 2011 */
CROSSREFS
Sequence in context: A212484 A279100 A347415 * A052825 A003082 A058053
KEYWORD
easy,nonn
AUTHOR
James A. Sellers, Apr 04 2000
STATUS
approved