login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

The number phi_3(n) of Frobenius partitions that allow up to 3 repetitions of an integer in a row.
0

%I #17 Nov 13 2016 05:24:04

%S 1,1,3,6,11,18,31,49,78,119,180,267,394,567,813,1151,1616,2244,3099,

%T 4240,5769,7790,10462,13965,18552,24502,32223,42176,54972,71340,92242,

%U 118800,152481,195017,248621,315945,400315,505694,637068,800380,1002964

%N The number phi_3(n) of Frobenius partitions that allow up to 3 repetitions of an integer in a row.

%D Andrews, George E., Generalized Frobenius partitions, Memoirs of the American Mathematical Society, Number 301, May 1984. See phi_3(n), page 41.

%F Expansion of q^(1/8) * eta(q^6)^5 / (eta(q) * eta(q^2) * eta(q^3)^2 * eta(q^12)^2) in powers of q. - _Michael Somos_, Mar 09 2011

%F Euler transform of period 12 sequence [ 1, 2, 3, 2, 1, -1, 1, 2, 3, 2, 1, 1, ...]. - _Michael Somos_, Mar 09 2011

%F G.f.: Product_{k>0} (1 - x^(12*k - 6)) / ( (1 - x^(6*k - 5)) * (1 - x^(6*k - 4))^2 * (1 - x^(6*k - 3))^3 * (1 - x^(6*k - 2))^2 * (1 - x^(6*k - 1)) *(1 - x^(12*k)) ). [Andrews, p. 11, equation (5.10)]

%F a(n) ~ exp(sqrt(n)*Pi)/(4*sqrt(6)*n). - _Vaclav Kotesovec_, Nov 13 2016

%e 1 + x + 3*x^2 + 6*x^3 + 11*x^4 + 18*x^5 + 31*x^6 + 49*x^7 + 78*x^8 + ...

%e 1/q + q^7 + 3*q^15 + 6*q^23 + 11*q^31 + 18*q^39 + 31*q^47 + 49*q^55 + 78*q^63 + ...

%t nmax = 50; CoefficientList[Series[Product[(1 + x^(6*k - 3)) / ( (1 - x^(6*k - 5)) * (1 - x^(6*k - 4))^2 * (1 - x^(6*k - 3))^2 * (1 - x^(6*k - 2))^2 * (1 - x^(6*k - 1)) * (1 - x^(12*k))), {k, 1, nmax}], {x, 0, nmax}], x] (* _Vaclav Kotesovec_, Nov 13 2016 *)

%o (PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^6 + A)^5 / (eta(x + A) * eta(x^2 + A) * eta(x^3 + A)^2 * eta(x^12 + A)^2), n))} /* _Michael Somos_, Mar 09 2011 */

%K easy,nonn

%O 0,3

%A _James A. Sellers_, Apr 04 2000