login
A347415
a(n) = Sum_{k=1..n} floor((n/k)^k).
3
1, 3, 6, 11, 18, 31, 48, 76, 118, 184, 279, 426, 641, 966, 1448, 2163, 3228, 4805, 7137, 10586, 15681, 23198, 34278, 50606, 74632, 109987, 161954, 238312, 350432, 514999, 756407, 1110391, 1629219, 2389346, 3502578, 5132354, 7517523, 11007078, 16110784, 23573102, 34480937, 50420909
OFFSET
1,2
LINKS
FORMULA
a(n) ~ sqrt(2*Pi*n) * exp(exp(-1)*n - 1/2). - Vaclav Kotesovec, Sep 14 2021
EXAMPLE
a(3) = [3/1] + [(3/2)^2] + [(3/3)^3] = 3 + 2 + 1 = 6.
MATHEMATICA
a[n_] := Sum[Floor[(n/k)^k], {k, 1, n}]; Array[a, 40] (* Amiram Eldar, Aug 31 2021 *)
PROG
(PARI) a(n) = sum(k=1, n, n^k\k^k);
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Aug 31 2021
STATUS
approved