login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A062071
a(n) = [n/1] + [n/(2^2)] + [n/(3^3)] + [n/(4^4)] + ... + [n/(k^k)] + ..., up to infinity, where [ ] is the floor function.
3
1, 2, 3, 5, 6, 7, 8, 10, 11, 12, 13, 15, 16, 17, 18, 20, 21, 22, 23, 25, 26, 27, 28, 30, 31, 32, 34, 36, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 51, 52, 53, 54, 56, 57, 58, 59, 61, 62, 63, 64, 66, 67, 69, 70, 72, 73, 74, 75, 77, 78, 79, 80, 82, 83, 84, 85, 87, 88, 89, 90
OFFSET
1,2
LINKS
Seiichi Manyama, Table of n, a(n) for n = 1..10000 (terms 1..1000 from Harry J. Smith)
FORMULA
a(n) = Sum_{i=1..n} floor(n/i^i). - Wesley Ivan Hurt, Sep 15 2017
G.f.: (1/(1 - x)) * Sum_{k>=1} x^(k^k)/(1 - x^(k^k)). - Seiichi Manyama, Aug 30 2021
Conjecture: a(n) ~ c * n, where c = A073009. - Vaclav Kotesovec, Aug 30 2021
EXAMPLE
a(7) = [7/1] + [7/4] + [7/27] + ... = 7 + 1 + 0 + 0 + ... = 8.
a(8) = [8/1] + [8/4] + [8/27] + [8/256] + ... = 8 + 2 + 0 + 0 + ... = 10.
MATHEMATICA
Flatten[{1, Table[Sum[Floor[n/k^k], {k, 1, Floor[N[Log[n]/LambertW[Log[n]]]] + 1}], {n, 2, 100}]}] (* Vaclav Kotesovec, Aug 30 2021 *)
PROG
(PARI) \p 10 v=[]; for(n=1, 120, v=concat(v, suminf(k=1, floor(n/k^k)))); v
(PARI) for (n=1, 1000, write("b062071.txt", n, " ", suminf(k=1, n\k^k)\1) ) \\ Harry J. Smith, Jul 31 2009
(PARI) a(n)=sum(k=1, exp(lambertw(log(n)))+1, n\k^k) \\ Charles R Greathouse IV, May 28 2015
(SageMath) [sum( floor(n/j^j) for j in (1..1+log(n)) ) for n in (1..100)] # G. C. Greubel, May 06 2022
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Amarnath Murthy, Jun 13 2001
EXTENSIONS
More terms from Jason Earls, Jun 21 2001
STATUS
approved